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1. Introduction

Mean-field approximation to many-body system

The study of one-particle motion in the mean field is the basis for 
understanding not only single-particle mode but also many-body correlation.

← Hartree-Fock approximationMean field
Self-consistent potential = Hatree-Fock potential

Phenomenological one-body potential
(convenient for understanding the physics in a simple terminology

and in a systematic way)

Harmonic-oscillator potential
Woods-Saxon potential

Note, for example, 
the shape of a many-body system can be obtained only from the one-body density 

← mean-field approximation



Harmonic-oscillator potential is exclusively used, for example,
the system with a finite number of electrons bound by an external field
( = a kind of NANO structure system).

This system is a sufficiently bound system so that harmonic-oscillator potential
is a good approximation to the effective potential.           

Another finite system to which quantum mechanics is applied is
clusters of metalic atoms

→ shell-structure based on one-particle motion of electrons

In this system a harmonic-oscillator potential is also often used.



2. Mean-field approximation to spherical nuclei

2.1. Phenomenological one-body potentials

3-dimensional harmonic oscillator potential
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2, 8, 20, 40, 70, 112, 168, …



One-particle levels for β stable nuclei

Large energy gap in one-particle spectra
Magic number 

N, Z = 8, 20,28,50,82,126, …

Nuclei with magic number :  spherical shape

High-j orbits, 1g9/2 , 1h11/2 , 1i13/2 , 1j15/2  ,
which have parity different from the neighboring
orbits do not mix with them under quadrupole
(Y2µ) deformation and rotation. 

One-particle motion in the mean-field 
→ shell structure (= bunching of one-particle 

levels)
→ nuclear shape

( Sn ≈ Sp ≈ 7-10 MeV )

h.o.
finite-well

Spin-orbit(surface)

Normal-parity orbits ← majority in a major shell
of medium-heavy nuclei

Modified harmonic-oscillator potential can often be 
a good approximation. 
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Phenomenological finite-well potential :

Woods-Saxon potential - an approximation to Hartree-Fock (HF) potential
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Woods-Saxon potential vs. harmonic-oscillator potential

Harmonic-oscillator potential cannot be used 
for weakly-bound or unbound (or resonant) 
levels.

For well-bound levels;
Corrections to harmonic-oscillator potential are;

a) repulsive effect for short and large distances
→ push up small ℓ orbits 

b) attractive effect for intermediate distances
→ push down large ℓ orbits

In the above figure the parameters are chosen so that 
the root-mean-square radius for the two potentials,
are approximately equal.

higher ℓ one-particle wave-functions

only ℓ=0 one-particle wave-funcions



Schrödinger equation for one-particle motion with spherical finite potentials 
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One-body spin-orbit potential in phenomenological potentials : surface effect !

In the central part of nuclei the density,  ρ(r) = const.
Then, the only direction, which nucleons can feel is the momentum, p

spFrom the two vectors, and the spin , of nucleons one cannot make 

P-inv (i.e. reflection-invariant)  and T-inv (i.e. time-reversal invariant)

quantity linear in the momentum.  For example, 
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In the presence of spin-orbit potential Vℓs(r) ( ( )s∝ ⋅ ) ,
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the total angular momentum of nucleons
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Centrifugal potential + Woods-Saxon potential dependence on  ℓ
ℓ = 0
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hR
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where Rh > r0 A1/3Height of centrifugal barrier ∝

{ higher for smaller nuclei
higher for larger  ℓ orbits

The height :

ex.  For the Woods-Saxon potential with  R=5.80 fm, a=0.65 fm, r0 =1.25 and
VWS = – 50 MeV ;

ℓ height of centrifugal barrier

0               0  MeV
1           ≈ 0.4
2           ≈ 1.3
3           ≈ 2.8
4           ≈ 5.1
5           ≈ 8.2



Height of centrifugal barrier ;

1)   well-bound particles are insensitive.

2) affects eigenenergies and wave-functions of weakly-bound neutrons,
especially with small ℓ

3)  affects the presence (or absence) of one-particle resonance, resonant energies

and widths.



Neutron radial wave-functions ℓ = 4

ℓ = 0

1 ˆ( ) ( ) ( )n jm n j jmr R r X r
r

Ψ =

ε = – 200 keVε = – 8 MeV

halo



For a finite square-well potential

The probability for one neutron to stay insideV(r)

R0

the potential, when the eigenvalue εnℓ (< 0)  → 0

r
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0
2
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2
rmsr r≡Root-mean-square radius, rrms , of one neutron ;

In the limit of  εnℓ (<0) → 0

rrms ∝ 1/ 2( )nε
−− → ∞ for ℓ = 0

→ ∞ for ℓ = 11/ 4( )nε
−−

finite value                 for ℓ ≥ 2



Unique behavior of low-ℓ orbits, as Enℓj (<0) → 0

Energies of neutron orbits in Woods-Saxon potentials as a function of potential radius

Fermi level of neutron drip line nuclei

Fermi level of stable nuclei

R = radius,    r0 = 1.27  fm,   

VWS = – 51  MeV

For stable nuclei
Strength of the potential (R/r0)3 → A : mass number



Neutron one-particle resonant and bound levels in spherical Woods-Saxon potentials

Unique behavior of ℓ=0 orbits, both for εnℓj <0 and εnℓj >0
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One-particle resonant level in spherical finite potentials ( Coulomb potential )

For εℓ > 0  and  r → large
2

2
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δ :   phase shift
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The width of the resonance;

2

res

d
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δ
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Γ ≡

The resonance energy  εres is defined so that the phase shift δℓ increases with energy ε
as it goes through  π/2 (modulo π).

For example, see ;  R.G.Newton, SCATTERING THEORY OF WAVES AND PARTICLES,
McGraw-Hill, 1966.

At  εres ;  (1) a sharp peak in the scattering cross section;
(2)  a significant time delay in the emergence of scattered particles;
(3)  the incoming wave (i.e. particles) can strongly penetrate into the system;
(4) ………..



0
0
>=kkdk

dδResonance ↔ time delay ↔

scattering amplitude ∑
∞

=

− +=
0

1 )(cossin)12()cos,( θδθ δ Pekkf i

For  r→ ∞ ,   a wave packet in a scattering is written as

where )(kφ :  sharply peaked around 0kk =

[ ] [ ]∫∫ −+−⋅ − )cos,()(exp)()(exp)( 1 θφφ kfEtkrirkkdEtrkikkd ($)

Assume that at k=k0 a sharp peak only in a given ℓ channel.
For very large t (= time), the 2nd term in ($) contributes only at the distance

)∵
02

0
kkdk

dt
m

kr =−≅
δ

)()()( 00 0
kk

dk
dkk kk −+≈ =
δδδ0kkfor ≈

0( )
2k k

d kik r t
dk me
δ

=+ −
0)( kkdk

dikEtkri ee =−
δ

=
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β-stable nuclei V(r)
r

One-particle levels which contribute
to many-body correlations

V(r)

r

V(r)

r

neutron drip line nuclei – role of continuum levels
and weakly-bound levels 

ΓContinuum levels

Importance of one-particle resonant levels with small width Γ in the many-body 
correlations.

Obs.  no one-particle resonant levels for s1/2 orbits.



A computer program to calculate one-neutron resonance (energy and width) 
in a spherical Woods-Saxon potential is available.

Is there anybody who wants to have it ?



Some summary of weakly-bound and positive-energy neutrons

(β=0)
in spherical potentials

Unique role played by neutrons with small ℓ ; s, (p) orbits

(a) Weakly-bound small-ℓ neutrons have appreciable probability to be outside 
the potential;   

ex.  For a finite square-well potential and εnℓj (<0) → 0 , the probability inside is
0     for s neutrons
1/3  for p neutrons

Thus, those neutrons are insensitive to the strength of the potential.

Change of shell-structure

(b) No one-particle resonant levels for s neutrons.
Only higher-ℓ neutron orbits have one-particle resonance with small  width.

Change of many-body correlation, such as
pair correlation and deformation
in loosely bound nuclei



2.2. Hartree-Fock (HF) approximation  → self-consistent mean-field

A mean-field approximation to the nuclear many-body problem with 
rotationally invariant Hamiltonian,

Popular effective interaction, vij , is 
so-called Skyrme interaction –
many different versions exist, but

in essence, ( )i jr rδ − interaction

plus density-dependent part that 
simulates the 3-body interaction.

2

2 i ij
i i j

H v
m <

= − ∆ +∑ ∑

“effective” two-body interaction

phenomenology !

The total wave function  Ψ is assumed to be a form of Slater determinant
consisting of one-particle wave-functions,

( )i jrϕ (i  and  j)  =  1, 2, ….., A

Variational principle | | 0Hδ Ψ Ψ =

2 3| ( ) | 1i i ir d rϕ =∫together with subsidiary conditions

leads to the HF equation.

OBS. The HF solution is not an eigen function of the Hamiltonian H.Ψ
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ϕ ϕ
ϕ ϕex.  HF equations for 2 particles (a simple example !)

exchange term (absent in Hartree approximation)

Hartree potential 1( )HV r and 2( )HV r
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1( )rϕ 2( )rϕFind the solutions, , with  ε1  and  ε2  , which satisfy simultaneouslyand

the above coupled equations.

The usual procedure of solving the HF equation is;

1 1( )rϕ

2 2( )rϕ
1 1( )rϕ
2 2( )rϕ

1( )V r

2( )V rw.f. pot. w.f.

Find self-consistent solutions together with eigenvalues,  ε1 and ε2 .



Hartree-Fock potential and one-particle energy levels
VN(r) : neutron potential,   VP(r) : proton nuclear potential, VP(r)+VC(r) : proton total potential 

A typical double-magic β-stable nucleus

126
208
82 Pb

One of Skyrme interactions ;
SkM*

See : J.Bartel et al., Nucl. Phys. A386 (1982) 79.



Hartree-Fock potentials and one-particle energy levels
VN(r) : neutron potential, VP(r) : proton nuclear potential

3s1/2
50

ex. of neutron-drip-line nuclei

50

ex. of proton-drip-line nuclei



3.  Observation of deformed nuclei

3.1.  Rotational spectrum and its implication
Some nuclei are deformed  --- axially-symmetric quadrupole (Y20) deformation

Observation :
1) rotational spectra     E(I) ≈ AI(I+1)
2) large quadrupole moment or large (E2;I→I-2) transition probability

For  E(I) = AI(I+1),

E(I=4)
E(I=2) =  3.33

ex.  In the ground band of 168Er

264.081
=  3.31

79.800

symmetry axis

K I
A rotational band, consisting of members with  I ≥ K .



2+

E2

0+

Observed E2-transition probabilities of 
the ground state (I=0) to the first excited
2+ state in stable even-even nuclei.

The single-particle value used as unit is

423/4
2

22 30.0
5
3

4
5)2( fmeAReEBsp =⎟

⎠
⎞

⎜
⎝
⎛=

π

Bohr & Mottelson, Nuclear Structure,
Vol.II, 1975, Fig.4-5



WARNING :   many different definitions (and notations) of Y20 deformation parameters

δ∑
=

=
Z

k
krQ

1

2
0 3

4
intrinsic quadrupole momentδ

uniformly-charged spheroidal nucleus 
with a sharp surface

22
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β2 is defined in terms of the expansion of the density distribution in spherical harmonics.β
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δosc or ε In the deformed harmonic oscillator model it is customary to use

av
osc R

RR ⊥

⊥

⊥ −
≈

+
−

≡ 3

3

3

2
3

ωω
ωωδε =

To leading order,   δ ≈ β2 ≈ δosc , but …….

pn δδ ≈ pnfor stable nuclei, but δδ < possibly for neutron-rich nuclei towards 
the neutron-drip-line, since pn RR > )∵ ppnn RR δδ ≈



Nuclei with deformed ground state close to the β stability line

rare-earth nuclei with
11290

All single or double closed-shell nuclei
are spherical.

some typical examples of deformed nuclei :

12C6 Oblate  (pancake shape)

20Ne10 Prolate (cigar shape)

≤≤ N
mostly prolate

Some new region of deformed ground-state nuclei away from β stability line;

1) N ≈ Z ≈ 38     ex.

20
30
10 Ne 20

32
12 Mg

36
72
36 Kr 38

76
38 Sr 40

80
40 Zr(oblate) (prolate ?) (prolate ?)

2) N ≈ 20          ex. (“island of inversion”)

3) N ≈ 8            ex.
8

12
4 Be 7

11
4 Be

etc.



Deformed ground state of N≈Z nuclei (proton-rich compared with stable nuclei)

Coexistence of prolate and oblate shape :

oblate          prolate prolate
Shape of the ground state (from Coulomb excitation);

(Z=36)

0+

2+

4+

290

538

0+

2+

4+

261

484

40
80
40 Zr38

76
38 Sr

Most probably prolate

OBS.  Almost all stable nuclei 
with N (or Z) = 40 are spherical.

0

635
854

1269
13634+

2+

0+
2+

0+ 0

918

1300

1469
1671

0+

2+

0+

4+

2+

40
74
34 Se

54
94
40 Zr

Ex.

(A.Goergen, Gammapool workshop in Trento, 2006)



2315 (4+)
(4+)2120

S(n) = 504 keV

2+885 2+½ - 660

0

319.8
Strong E1 Strong E2

½ + 0+ 0+

22
34
12 Mg20

32
12 Mg

7
11
4 Be

β =            0.52 0.58

S(n) =           5.81                   4.16  MeVThe spin-parity of the ground state,
½+ ,  as well as the small energy
distance between the ½ - and ½+
levels, 320 keV,  is easily explained,
If the nucleus is deformed !

E(4+)
=      (2.62)                   (3.21)

E(2+)

N=20 is not a magic number !N=8 is not a magic number !
(in this neutron-rich nucleus) (in these neutron-rich nuclei)



Example of deformed excited states of magic nuclei

20
40
20Ca : doubly-magic nucleus,   spherical ground state

strongly-deformed band

+ 0.39
– 0.29Qt  = 1.80 eb

from Doppler shift measurement

+ 0.11
– 0.07→ β = 0.59

From E.Ideguchi et al., Phys.Rev.Lett. 87 (2001) 222501.



Implication of rotational spectra :

(1) Existence of deformation (in the body-fixed system), so as to specify 
an orientation of the system as a whole.

(2) Collective rotation, as a whole, and internal motion w.r.t. the body-fixed system
are approximately separated in the complicated many-body system.

Classical system : An infinitesimal deformation is sufficient to establish 
anisotropy.

Quantum system : [zero-point fluctuation of deformation] << [equilibrium deformation],
in order to have a well-defined rotation.

Indeed,
collective rotation is the best established collective motion in nuclei.



For some nuclei Hartree-Fock (HF) calculations with rotationally-invariant Hamiltonian
end up with a deformed shape !

spherical shape  ← HF solutions for “closed-shell” nuclei

deformed shape  ← HF solutions for some nuclei

exhibit rotational spectra

Deformed shape obtained from HF calculations is interpreted 
as the intrinsic structure (in the body-fixed system) of the nuclei.

∴

The notion of one-particle motion in deformed nuclei can be, in practice, 
much more widely, in a good approximation, applicable than that in spherical nuclei.

∵) The major part of the long-range two-body interaction is already taken into account
in the deformed mean-field.

Thus, the spectroscopy of deformed nuclei is often much simpler than that of 
spherical vibrating nuclei.



What can one learn from rotational spectra ?

(a) Quantum numbers of rotational spectra  ↔ symmetry of deformation
ex. Parity is a good quantum number ← space reflection invariance, 

K is a good quantum number ← Axially-symmetric shape ( E(I)    I(I+1) ) ,
where K is the projection of angular momentum along the symmetry axis. 

The K=0 rotational band has only I = 0, 2,4,… ← shape is R- invariant,
Kramers degeneracy ← time reversal invariance, 
etc.

∝

(b) rotational energy, E(I) - E(I-2)
E2 transition probability } ↔ size of deformation

R-invariant shape : in addition to axially-symmetry, the shape is further invariant w.r.t.
a rotation of π about an axis perpendicular to the symmetry axis. 

(If a shape is already axial symmetric, reflection invariance is equivalent to R-inv.)
ex. Y20 deformed shape is R-invariant, but not Y30 deformed shape.

Kramers degeneracy : The levels in an odd-fermion system are at least doubly degenerate.



Why are some nuclei deformed ?

Usual understanding ;

Deformation of ground states (ND,  R┴ : Rz ≈ 1 : 1.3)  ← Jahn-Teller effect

Many particles outside a closed shell in a spherical potential
→ near degeneracy in quantum spectra
→ possibility of gaining energy by breaking away from spherical symmetry

using the degeneracy

Superdeformation (SD,  R┴ : Rz ≈ 1 : 2) at high spins in rare-earth nuclei or 
fission isomers in actinide nuclei   

← new shell structure (and new magic numbers !) at large deformation



3.2. Important deformation and quantum numbers in deformed nuclei

Axially symmetric quadrupole (Y20) deformation (plus R-symmetry)   
- most important deformation in nuclei 

Rz

Rx

Ry

R┴ (= Rx = Ry )< Rz prolate (cigar shape)

R┴ (= Rx = Ry ) > Rz oblate (pancake shape)

Axially-symmetric quadrupole-deformed harmonic-oscillator potential
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One-particle spectrum of Y20-deformed harmonic-oscillator potential
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One-particle Hamiltonian with spin-orbit potential
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where θ is polar angle w.r.t. the symmetry axis ( = z-axis)

Quantum numbers of one-particle motion in H

(1) Parity   π = (-1)ℓ where  ℓ is orbital angular momentum of one-particle.

(2) Ω ← ℓz +sz )∵
[ ] 0),( =+⋅ zz ss[ f(r) Y20 (θ) , ℓz + sz ] = 0 and



4.  One-particle motion sufficiently bound in Y20 deformed potential
))(()()()(),( 2020 srVYrVrVrV s ⋅++= θθ

4.1.  Normal-parity orbits and/or large deformation
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))((
2

22222
0 yxzMTH z +++= ⊥ωω ))((' srVH s ⋅=

⊥⊥ +++= ωωε )1()
2
1(),( nnnN zzz )1(2 +⊥n n┴ = nx + nyhas degeneracy.

The degeneracy can be resolved by specifying  nx = 0, 1, …, n┴ for a given n┴ .   However,

since  [H0 , ℓz] = 0,      (ℓ z :  z-component of one-particle orbital angular momentum),
quantum number  Λ (← ℓ z )  can be used to resolve the )1( +⊥n degeneracy. 

Possible values of  Λ are Λ = ±n┴ , ±(n┴ - 2), ……., ±1  or  0.

The basis ],[ ,Λ⊥ znn is useful for )(' sH ⋅∝

Including spin,  Σ ← sz , ΛΣ+=ΛΣΛΣ ⊥⊥⊥⊥⊥ zszzzz nnrVnnnnnnHnn )(),(ε

[ ]ΛΣ⊥ znn [ N nz Λ Ω ]or :  asymptotic quantum numbers

znn +⊥N = and    Ω = Λ + Σ



[ N nzΛ Ω ] :   approximately good quantum numbers for large Y20 deformation

( Ω is an exact quantum-number )

Thus, in deformed nuclei it is customary to denote 
observed one-particle levels,  or
one-particle levels obtained from finite-well potentials,  or
HF one-particle levels etc.

by  [ N nzΛ Ω ] , in which |NnzΛΩ> is the major component of the wave functions.

Denote  Ω > 0 value, though  ± Ω doubly degenerate (Kramers degeneracy).

ex.   For deformation  δ = 0.3  the proton one-particle wave-functions obtained by diagonalizing
H = T + V(r,θ)  with a (ℓ·s) potential  are 

| [411 3/2] >  =  0.926 | 411 3/2> + … = 0.418 |g9/2 > -0.140 |g7/2 > +0.864 |d5/2 > +0.246 |d3/2 > 
| [411 1/2] >  =  0.900 | 411 1/2> + … = -0.163 |g9/2 >+0.396 |g7/2 > -0.099 |d5/2 > +0.848 |d3/2 > +0.297|s1/2 > 
| [400 1/2] >  =  0.968 | 400 1/2> + … =0.147 |g9/2 > -0.072 |g7/2 > +0.539 |d5/2 > -0.160 |d3/2 > +0.811 |s1/2 >

(From A.Bohr & B.R.Mottelson, Nuclear Structure, vol.II, Table 5-2.)



))(()()()(),( 2020 srVYrVrVrV s ⋅++= θθ

))(()()( 202 srVYrV s ⋅<<θ4.2. high-j orbits and/or small deformation

those pushed down by potential :)( s⋅ ex. g9/2 ,h11/2 , i13/2 ,…

j (= one-particle angular momentum) is approximately a good quantum number.

H0 = T + V0 + Vℓs(r) )( s⋅

H’ = V2(r) Y20 (θ)

For a single-j shell,

H0 |ℓj > = ε0(ℓj) |ℓj >

H | ℓjΩ > = ε(ℓjΩ) | ℓjΩ >

ε(ℓjΩ) = ε0(ℓj) + < ℓjΩ | H’ | ℓjΩ >
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deformation parameter

spherical : (2j+1) degeneracy   → Y20 deformed : ± Ω degeneracy



4.3.  “Nilsson diagram” — one-particle spectra as a function of deformation

Levels are doubly degenerate with  ± Ω .

))(()()()(),( 2020 srVYrVrVrV s ⋅++= θθ

(π ,Ω) : exact quantum numbers.

Levels with a given  (π, Ω)  interact !

prolateoblate

spherical
symmetric

π = +

π = –

[NnzΛΩ] Diagonalize H = T + V(r,θ)

where

i.e. levels with the same (π, Ω) never cross !



Proton orbits in prolate potential (50 < Z < 82).
g7/2 , d5/2 , d3/2 and s1/2 orbits, which have π = +, do not mix with h11/2 by Y20 deformation.

[N=4, nz =0]

Levels are doubly degenerate
with  ± Ω .

h11/2 orbit
= high-j orbit
with π = –

At small δ and  h11/2 orbit,

ε δ (3Ω2 – j(j+1) )∝

At large δ,

ε – δ(3nz – N)∝

[N=4, nz =2]

At  δ > 0.3 for prolate shape
quantum numbers [NnzΛΩ] work
well, except for high-j orbits.



Intrinsic configuration in the body-fixed system

Good approximation ;

(a) In the ground state of eve-even nuclei

0
1

=Ω≡ ∑
=

A

i
iK

Namely, ± Ω levels are pair-wise occupied.

(b) In low-lying states of odd-A nuclei

∑
=
Ω≡

A

i
iK

1
⇒ Ω of the last unpaired particle.

Low-lying states in deformed odd-A nuclei
may well be understood in terms of 
the [NnzΛΩ] orbit of the last unpaired 
particle. 



ex.  The N=13 th neutron orbit is seen in low-lying excitations in 25Mg13 

s1/2

Note  (a)  I ≥ K (← I3 )
(b)  the bandhead state has I=K.

Exception may occur for K=1/2 bands.
(c) some irregular rotational spectra are 

observed for K=1/2 bands.

1) Leading-order E2 and M1 intensity relation
works pretty well 
→ Q0 ≈ +50 fm2 → δ ≈ 0.4

(gK – gR) ≈ 1.4  for [202 5/2]   etc.

f7/2



319.8

0

½ -

½ +

Sn = 504 keV

7
11
4 Be

The observed spectra can be easily 
understood if the deformation  δ ~ 0.6 .
Indeed, the observed deformation in 
12Be(p,p’) is  β ~ 0.7 . 

N=8 is not a magic number !

In the spherical shell-model the above ½+ state must be interpreted as the  
1-particle (in the sd-shell) 2-hole (in the p-shell) state, which was pushed down 
below the ½- state (1-hole in the p-shell) due to some residual interaction. 

ex. 

An additional element :
weakly-bound [220 ½]  

→ major component becomes s1/2 (halo)
→ one-particle energy is pushed down relative to p1/2

S1/2

(N = 7)

(i.e. neutron binding 
energy =  504 keV)



Table 1.
Selection rule of one-particle operators between one-particle states 

with exact quantum numbers (N nzΛ Ω) .

The matrix elements between the levels with
the assigned asymptotic quantum numbers,
[N nzΛ Ω] , can be obtained, to leading order,
from this table.

E1 operator

M1 operator

Gamow-Teller operator

E2 operator

If you use this kind of tables, you must be careful 
about the sign of the non-diagonal matrix elements, 
which depends on the phase convention of 
wave functions !

From J.P.Boisson and R.Piepenbring, Nucl. Phys. A168(1971)385.



Table 2.

Matrix-elements of one-particle operators in  |(ℓ s) j, Ω › representations
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Ω+Ω + ,)(1,)( 1122 jssjs

( s± = sx ± i sy etc. )Table 2 (continued)
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Table 2 (continued)

Phase convention in wave functions  - important in non-diagonal matrix-elements

jsjs
j

)()1()( 2
1

−+
−=1)  (ℓs)j or (sℓ)j ;

),( φθmY2) or ),( φθmYi

{ > 0  (or  < 0)     for r → 0 ,        or
)(rR j3)

> 0  (or  < 0)     for r → very large,       or

output of computers



5. Weakly-bound and one-particle resonant neutron levels 
in Y20 deformed potential

harmonic-oscillator potential



[321 3/2]

6

24

[N nzΛ Ω ]
asymptotic quantum numbers

Parity π = (-1)N

Each levels are doubly-degenerate with ±Ω

6 doubly-degenerate levels in sd-shell

3 Ωπ=1/2+   (ℓmin=0)

2 Ωπ=3/2+   (ℓmin=2)

1 Ωπ=5/2+ (ℓmin=2)}12 particles

Well-bound one-particle levels
in deformed potential

A.Bohr and B.R.Mottelson, vol.2, Figure 5-1.

One-particle levels in (Y20) deformed
harmonic oscillator potentials



5.1. Weakly-bound neutrons

s1/2

d5/2

d3/2

Radial wave functions of the [200 ½] level  
in Woods-Saxon potentials

(The radius of potentials is adjusted to obtain respective eigenvalues εΩ .)

Bound state with εΩ = -0.0001 MeV.Bound state with εΩ = -8.0 MeV.

Wave functions unique in finite-well potentials.Similar behavior to wave functions in harmonic osc. potentials.



W-S potential parameters are fixed except radius R.
I.H., Phys. Rev. C72, 024301 (2005)

potential strength

Woods-Saxon

[200 ½][211 ½]

[220 ½
]

ℓ min = 0
ℓ min = 2
ℓ min = 1

(r0 = 1.27 fm  is used.)



PRC69, 041306R (2004)

Deformed halo nuclei
ℓmin=0

Ωπ=1/2+ neutron orbit → s1/2 , as |εΩ|→ 0.

deformed core

, irrespective of the size of deformation and the kind of one-particle orbits.

The rotational spectra of deformed halo nuclei must come from the deformed core.



For ε → 0, the s-dominance will appear in all Ωπ =1/2+ bound orbits.  However,
the energy, at which the dominance shows up, depends on both 
deformation and respective orbits. 

ex. three Ωπ =1/2+ Nilsson orbits in the sd-shell ;



5.2. One-particle resonant levels – eigenphase formalism

Radial wave functions of the [200 ½]  level s1/2 d3/2 d5/2

The potential radius is adjusted to obtain respective eigenvalue (εΩ < 0) and resonance (εΩ > 0).
Resonant state with εΩ = +100 keV

Bound state with εΩ = – 0.1 keV

Existence of resonance ← d component
Width of resonance ← s component

OBS. Relative amplitudes of various components inside the potential remain nearly the same
for εΩ = – 0.1 keV → + 100 keV.



Relative probability of s1/2 component inside the W-S potential

2/12/12/32/32/52/5

2/12/1
2/1 |)(||)(||)(|

|)(|
)(

srVsdrVddrVd
srVs

sP
++

=

In order that one-particle resonance continues for εΩ>0, 
P(s1/2) at εΩ=0 must be smaller than some critical value.
The critical value depends on the diffuseness of the potential.

One-particle resonance

One-particle shell-structure change
for εΩ (<0) → 0  produces 
the large change of P(s1/2) values
of respective [N nzΛ Ω] orbits
as εΩ (<0) → 0. 



Positive-energy neutron levels in Y20-deformed potentials

Ωπ = 1/2+ s1/2 , d3/2, d5/2 , g7/2 ,g9/2 , …..,  components ℓmin = 0

Ωπ = 3/2+ d3/2 , d5/2 , g7/2 , g9/2 , …..,   components ℓmin = 2

Ωπ = 1/2 – p1/2 , p3/2 , f5/2 , f7/2 , h9/2 , …..,   components ℓmin =1

etc.

The component with ℓ = ℓmin plays a crucial role in the properties of possible 
one-particle resonant levels.

(Among an infinite number of positive-energy one-particle levels, one-particle resonant levels  
are most important in the construction of many-body correlations of nuclear bound states.)



Do not restrict the system in a finite box !0<ΩεFor

∞→r)()( rrhrR bj α∝Ω
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)()()( zinzjizh
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2
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0>ΩεFor
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2cr
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where
Ω≡ εα 2

2 2m
c

Ωδ expresses eigenphase.
A.U.Hazi, Phys.Rev.A19, 920 (1979).
K.Hagino and Nguyen Van Giai, Nucl.Phys.A735, 55 (2004).

A given eigenchannel : asymptotic radial wave-functions behave in the same way for all 
angular momentum components.



A one-particle resonant level with εΩ is defined so that
one eigenphase δΩ increases through (1/2)π as εΩ increases.

ε

δ

(1/2)π
resε

εΩ

δΩ

(1/2)π
resε

When one-particle resonant level in terms of one eigenphase is 
obtained, the width Γ of the resonance is calculated by

resd
d

ΩΩ=Ω

Ω
⎥
⎦

⎤
⎢
⎣

⎡
≡Γ

εε
ε
δ
2

Phys. Rev. C72, 024301 2005)



I.H., Phys. Rev. C73, 064308 (2006)

Some comments on eigenphase ;

1) For a given potential and a given εΩ
there are several (in principle, an infinite number of) solutions of eigenphase δΩ .

2) The number of eigenphases for a given potential and a given εΩ is equal to 
that of wave function components with different (ℓ,j) values.

3) The value of δΩ determines the relative amplitudes of different (ℓ,j) components.

4) In the region of small values of εΩ ( > 0),  only one of eigenphases varies strongly
as a function of εΩ ,  while other eigenphases remain close to the values of nπ. 

In the limit of  β→0 , the definition of one-particle resonance in eigenphase formalism
→ the definition in spherical potentials found in text books.



Variation of all three eigenphases
(s1/2 , d3/2 and d5/2 levels are included in the coupled channels.)

eigenphase sum

π/2

eigenphase sum

π/2

A weakly-bound Nilsson level is present
for this potential.

No weakly-bound Nilsson level is
present for this potential.



5.3. Examples of Nilsson diagrams for light neutron-rich nuclei 

1.  ~ 17C11       (S(n) = 0.73 MeV,   3/2+)

2.  ~ 31Mg19 (S(n) = 2.38 MeV,  1/2+)

~ 33Mg21       (S(n) = 2.22 MeV, 3/2–)

Near degeneracy of some weakly-bound or resonant levels in spherical potential,
unexpected from the knowledge on stable nuclei

- the origin of deformation and …….
Jahn-Teller effect



1d3/2

1d5/2

2s1/2

1p1/2

At β=0 ; 
ε(2s1/2)-ε(1d5/2)

= 140 keV

17C11    (3/2+)
S(n) = 0.73 MeV



(MeV)



1f7/2

1d3/2

2s1/2

1d5/2

2p1/2 ?

2p3/2 ?

ε(1f5/2 ) = +8.96 MeV

At β=0 ;
ε(2p3/2) < ε(1f7/2)

33Mg21     (3/2–)
S(n) = 2.22 MeV

31Mg19   (1/2+)
S(n) = 2.38 MeV



(MeV)



1f5/2

2p3/2

1f7/2

1d3/2

2s1/2

2p1/2 ?

At β=0 ;
ε(2p3/2) – ε(1f7/2)

= 680 keV

37Mg25   

S(n) = a few 
hundreds keV ?



Appendix.  Angular momentum projection from a deformed intrinsic state

(ex. not appropriate for including the rotational perturbation of intrinsic states)

Rotational operator )(ΩR Ω : Euler angles ),,( γβα
zyz JiJiJi eeeR γβα −−−≡Ω )(

Rotation matrix )(' Ω
J
MMD

)()',()',(''')( ' Ω=Ω J
MMDJJMJRJM δααδαα

Inverting the expression

∑ Ω=Ω
J

J
MM JMDJMR

α

αα ')()( '

Multiplying by )(' Ω
∗J

MMD and integrating over Ω, we obtain a projection operator

∫∑ ΩΩΩ
+

=≡
∗ )()(

8
12

2 RDdJJMJMP J
MM

J
M π

αα
α

We need to calculate the expressions 

∫ ΩΩΩ
+

=
∗ φφ

π
φφ )()(

8
12

2 RDdJP J
MM

J
M

∫ ΩΩΩ
+

=
∗

φφ
π

φφ )()(
8

12
2 HRDdJHP J

MM
J

M

φ



Appendix

If φ is axially symmetric, φφ MJ z =

MiJiMi eeeR y γβα φφφφ −−−=Ω)(

MiJiMiJ
MM eJMeJMeD y γβα −−−=Ω)(

then,  using the “reduced rotation matrix” ')(' JMeJMd yJiJ
MM

θθ −=

φφθθθφφ θ
π

yJiJ
MM

J
M eddJP −∫

+
= )(sin

2
12

0

∫ −+
=

π
θ φφθθθφφ

0

)(sin
2

12 yJiJ
MM

J
M HeddJHP

≈ 1   for   θ << 1 ,
decreases quickly as  θ → larger ,
is symmetric about  θ = π/2 .

{φφ θ yJie−


