(expecting experimentalists as an audience)

One-particle motion in nuclear many-body problem

- from spherical to deformed nuclei - from stable to drip-line
- from static to rotating field - from particle to quasiparticle
- collective modes and many-body correlations in terms of one-particle motion

Ikuko Hamamoto

Division of Mathematical Physics, LTH, University of Lund, Sweden

The figures with figure-numbers but without reference, are taken from
the basic reference : A.Bohr and B.R.Mottelson, Nuclear Structure, Vol. I \& II

1. Introduction
2. Mean-field approximation to spherical nuclei

- well-bound, weakly-bound and resonant one-particle levels
2.1. Phenomenological one-body potentials
(harmonic-oscillator, Woods-Saxon, and finite square-well potentials)
2.2. Hartree-Fock approximation - self-consistent mean-field

3. Observation of deformed nuclei
3.1. Rotational spectrum and its implication
3.2. Important deformation and quantum numbers in deformed nuclei
4. One-particle motion sufficiently-bound in Y_{20} deformed potential
4.1. Normal-parity orbits and/or large deformation
4.2. high-j orbits and/or small deformation
4.3. "Nilsson diagram" - one-particle spectra as a function of deformation

Tables 1 and 2 Matrix-elements of one-particle operators
5. Weakly-bound and resonant neutron levels in Y_{20} deformed potential
5.1. Weakly-bond neutrons
5.2. One-particle resonant levels - eigenphase formalism
5.3. Examples of Nilsson diagram for light neutron-rich nuclei

Appendix Angular momentum projection from a deformed intrinsic state

1. Introduction

Mean-field approximation to many-body system
The study of one-particle motion in the mean field is the basis for understanding not only single-particle mode but also many-body correlation.

Mean field \longleftarrow Hartree-Fock approximation Self-consistent potential = Hatree-Fock potential

Phenomenological one-body potential
(convenient for understanding the physics in a simple terminology and in a systematic way)

Harmonic-oscillator potential Woods-Saxon potential

Note, for example, the shape of a many-body system can be obtained only from the one-body density
\leftarrow mean-field approximation

Harmonic-oscillator potential is exclusively used, for example, the system with a finite number of electrons bound by an external field (= a kind of NANO structure system).
This system is a sufficiently bound system so that harmonic-oscillator potential is a good approximation to the effective potential.

Another finite system to which quantum mechanics is applied is clusters of metalic atoms
\longrightarrow shell-structure based on one-particle motion of electrons
In this system a harmonic-oscillator potential is also often used.

2. Mean-field approximation to spherical nuclei

2.1. Phenomenological one-body potentials

3-dimensional harmonic oscillator potential

In the above figure

$$
\begin{aligned}
V(r)= & \frac{1}{2} m \omega^{2} r^{2}+\underline{\text { const }} \\
\text { where } \frac{\text { const }}{\hbar} & =-55 \mathrm{MeV} \\
\hbar \omega & =8.6 \mathrm{MeV}
\end{aligned}
$$

$H=-\frac{\hbar^{2}}{2 m} \Delta+\frac{\frac{1}{2} m \omega^{2} r^{2}}{\uparrow}$
harmonic-oscillator potential
has a spectrum

$$
\varepsilon=\left(N+\frac{3}{2}\right) \hbar \omega
$$

where

$$
\begin{aligned}
N & =n_{x}+n_{y}+n_{z} \quad \text { in rectilinear coordinates } \\
& =2\left(n_{r}-1\right)+\ell \quad \text { in polar coordinates } \\
\ell & =N, N-2, \ldots 0 \text { or } 1
\end{aligned}
$$

Degeneracy of the major shell with a given N

$$
\begin{aligned}
& \sum_{\ell \uparrow} 2(2 \ell+1)=(N+1)(N+2) \\
& \text { spin } \uparrow \downarrow \quad(\ell=\text { even for } N=\text { even, odd for } N=\text { odd })
\end{aligned}
$$

leads to the magic numbers

$$
2,8,20,40,70,112,168, \ldots
$$

One-particle levels for β stable nuclei

$$
\left(S_{n} \approx S_{p} \approx 7-10 \mathrm{MeV}\right)
$$

Modified harmonic-oscillator potential can often be a good approximation.

Large energy gap in one-particle spectra
\longleftrightarrow Magic number

$$
N, Z=8,20,28,50,82,126, \ldots
$$

Nuclei with magic number : spherical shape

Normal-parity orbits \leftarrow majority in a major shell of medium-heavy nuclei

High-j orbits, $1 g_{9 / 2}, 1 h_{11 / 2}, 1 i_{13 / 2}, 1 j_{15 / 2}$,
which have parity different from the neighboring orbits do not mix with them under quadrupole $\left(Y_{2 \mu}\right)$ deformation and rotation.

One-particle motion in the mean-field
\rightarrow shell structure (= bunching of one-particle levels)
\rightarrow nuclear shape

Phenomenological finite-well potential :
Woods-Saxon potential - an approximation to Hartree-Fock (HF) potential

$$
V(r)=V_{W S} f(r) \quad \text { where } \quad f(r)=\frac{1}{1+\exp \left(\frac{r-R}{a}\right)}
$$

a : diffuseness
R : radius

$$
R=r_{0} A^{1 / 3}
$$

A : mass number
standard values of parameters

$$
\begin{aligned}
r_{0} & \approx 1.27 \mathrm{fm} \quad a \approx 0.67 \mathrm{fm} \\
V_{\mathrm{ws}} & =\left(-51 \pm 33 \frac{N-Z}{A}\right) \quad \mathrm{MeV} \quad \text { for } \quad \begin{array}{l}
+ \text { for neutrons } \\
- \text { for protons }
\end{array}
\end{aligned}
$$

Woods-Saxon potential vs. harmonic-oscillator potential

In the above figure the parameters are chosen so that the root-mean-square radius for the two potentials, are approximately equal.

Harmonic-oscillator potential cannot be used for weakly-bound or unbound (or resonant) levels.

For well-bound levels;

Corrections to harmonic-oscillator potential are;
a) repulsive effect for short and large distances
\rightarrow push up small ℓ orbits
b) attractive effect for intermediate distances
\rightarrow push down large ℓ orbits

Schrödinger equation for one-particle motion with spherical finite potentials

$$
H=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+V(r)+V_{t s}(r) \quad(x, y, z) \rightarrow(r, \theta, \varphi)
$$

$H \Psi=\varepsilon \Psi$

$$
\Psi=\frac{1}{r} R_{n j j}(r) X_{\ell j m_{j}}(\hat{r})
$$

where

$$
\begin{gathered}
X_{\ell j_{j}}(\hat{r})=\sum_{m_{l}, m_{s}} C\left(\ell, \frac{1}{2}, j ; m_{\ell}, m_{s}, m_{j}\right) Y_{\ell m_{\ell}}(\theta, \phi) \chi_{1 / 2, m_{s}} \\
(\vec{\ell})^{2} Y_{\ell m}(\theta, \phi)=\hbar^{2} \ell(\ell+1) Y_{\ell m}(\theta, \phi)
\end{gathered}
$$

The Shrödinger equation for radial wave-functions is written as

$$
\left\{\frac{d^{2}}{d r^{2}}-\frac{\ell(\ell+1)}{r^{2}}+\frac{2 m}{\hbar^{2}}\left(\varepsilon_{n j}-V(r)-V_{t s}(r)\right)\right\} R_{n j}(r)=0
$$

For example, for neutrons eq.(\$) should be solved with the boundary conditions;

$$
\left.\begin{array}{l}
\text { at } r=0 \quad R_{\ell}(r)=0 \\
\text { at } r \rightarrow \text { large (where } V(r)=0) \\
\text { for } \quad \varepsilon_{\ell}<0 \quad R_{\ell}(r) \propto \alpha r h_{\ell}(\alpha r) \quad \text { where } \quad \alpha^{2}=-\frac{2 m}{\hbar^{2}} \varepsilon_{\ell} \quad \text { and } \quad h_{\ell}(-i z) \equiv j_{\ell}(z)+i n_{\ell}(z) \\
\\
\text { for spherical Hankel function } \\
j_{\ell}: \text { spherical Bessel function } \\
n_{\ell}: \text { spherical Neumann function }
\end{array}\right]
$$

One-body spin-orbit potential in phenomenological potentials : surface effect !
In the central part of nuclei the density, $\rho(r)=$ const.
Then, the only direction, which nucleons can feel is the momentum, $\quad \vec{p}$
From the two vectors, \vec{p} and the spin \vec{S}, of nucleons one cannot make P-inv (i.e. reflection-invariant) and T-inv (i.e. time-reversal invariant)
quantity linear in the momentum. For example,

$(\vec{p} \cdot \vec{s})$	
$(\vec{p} \times \vec{s}) \cdot \vec{s}$	Dink

At the nuclear surface $\vec{\nabla} \rho(r) \neq 0 \quad$ i.e. $\quad \vec{\nabla} \rho(r)=\left(\frac{\partial \rho}{\partial r}, 0,0\right) \quad$ in polar coordinate (r, θ, φ) Then,

$$
\begin{aligned}
(\vec{p} & \times \vec{s}) \cdot \vec{\nabla} \rho(r) & : P-\operatorname{inv} \& T \text {-inv ! } \\
& =\left(p_{\theta} s_{\phi}-p_{\phi} s_{\theta}\right) \frac{\partial \rho}{\partial r} & =\frac{1}{r}((\vec{r} \times \vec{p}) \cdot \vec{s}) \frac{\partial \rho}{\partial r} \\
& =(\vec{\ell} \cdot \vec{s}) \frac{1}{r} \frac{\partial \rho}{\partial r} &
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r}=(r, 0,0) \\
& \vec{r} \times \vec{p}=\left(0,-r p_{\phi}, r p_{\theta}\right)
\end{aligned}
$$

In practice, one often uses the form

$$
V_{\ell s}(r)=\lambda(\vec{\ell} \cdot \vec{s}) \frac{1}{r} \frac{\partial V_{c}(r)}{\partial r}
$$

In the presence of spin-orbit potential $V_{\ell s}(r)(\propto(\vec{\ell} \cdot \vec{s}))$,

$$
\begin{aligned}
& {\left[(\vec{\ell} \cdot \vec{s}), \ell_{2}\right] \neq 0} \\
& {\left[(\vec{\ell} \cdot \vec{s}), s_{2}\right] \neq 0} \\
& {\left[(\vec{l} \cdot \vec{s}), \ell_{2}+s_{z}\right]=0}
\end{aligned}
$$

becomes a good quantum-number.
$H=-\frac{\hbar^{2}}{2 m} \Delta+V(r) \quad \rightarrow$ quantum number of one-particle motion $\left(\ell, \mathrm{s}, \mathrm{m}_{\ell}, \mathrm{m}_{\mathrm{s}}\right)$
$H=-\frac{\hbar^{2}}{2 m} \Delta+V(r)+V_{l s}(r) \quad \rightarrow$ quantum number of one-particle motion $\left(\ell, \mathrm{s}, \mathrm{j}, \mathrm{m}_{\mathrm{j}}\right)$
$\left.(\vec{\ell} \cdot \vec{s})=\frac{1}{2}\left\{\vec{j}^{2}-\vec{\ell}^{2}-\vec{s}^{2}\right\}=\frac{1}{2}\left\{j(j+1)-\ell(\ell+1)-\frac{1}{2} \frac{1}{2}+1\right)\right\}=\left\{\begin{array}{cl}-\ell-1 & \text { for } j=\ell-1 / 2 \\ \ell & \text { for } j=\ell+1 / 2\end{array}\right.$
$H \Psi=\varepsilon \Psi \quad \Psi=\frac{1}{r} R_{\ell j}(r) X_{\ell m_{j}} \quad$ where $\quad X_{\ell m_{j}} \equiv \sum_{m_{s}, m_{s}} C\left(\ell, \frac{1}{2}, j ; m_{\ell}, m_{s}, m_{j}\right) Y_{\ell m_{t}}(\theta, \phi) \chi_{1 / 2, m_{s}}$
The radial part of the Schrödinger equation becomes

$$
\left\{\frac{d^{2}}{d r^{2}}-\frac{\ell(\ell+1)}{r^{2}}+\frac{2 m}{\hbar^{2}}\left(\varepsilon_{\ell j}-V(r)-V_{l s}(r)\right)\right\} R_{\ell j}(r)=0
$$

Centrifugal potential + Woods-Saxon potential

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+V(r) \\
& =-\frac{\hbar^{2}}{2 m}\left(\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r+\frac{1}{r^{2}}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right)\right)+V(r) \\
& \quad=-\frac{\hbar^{2}}{2 m}\left(\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r-\frac{1}{r^{2}} \frac{(\vec{\ell})^{2}}{\hbar^{2}}\right)+V(r) \\
& \text { centrifugal potential }
\end{aligned}
$$

dependence on ℓ

- - - - Woods-Saxon pot.
............. centrifugal pot.
$\ldots \quad$ W-S + centrifugal pot.

Height of centrifugal barrier $\propto \frac{\ell(\ell+1)}{R_{h}{ }^{2}}$
The height: $\left\{\begin{array}{l}\text { higher for smaller nuclei } \\ \text { higher for larger } \ell \text { orbits }\end{array}\right.$
ex. For the Woods-Saxon potential with $R=5.80 \mathrm{fm}, a=0.65 \mathrm{fm}, r_{0}=1.25$ and $V_{w s}=-50 \mathrm{MeV}$;

ℓ	height of centrifugal barrier
0	0 MeV
1	≈ 0.4
2	≈ 1.3
3	≈ 2.8
4	≈ 5.1
5	≈ 8.2

Height of centrifugal barrier ;

1) well-bound particles are insensitive.
2) affects eigenenergies and wave-functions of weakly-bound neutrons, especially with small ℓ
3) affects the presence (or absence) of one-particle resonance, resonant energies and widths.

Neutron radial wave-functions

$$
\Psi_{n \ell j m}(\vec{r})=\frac{1}{r} R_{n t j}(r) X_{\ell j m}(\hat{r})
$$

$$
\varepsilon=-8 \mathrm{MeV}
$$

$\varepsilon=-200 \mathrm{keV}$

For a finite square-well potential

The probability for one neutron to stay inside
the potential, when the eigenvalue $\varepsilon_{\mathrm{n} \mathrm{\ell}}(<0) \rightarrow 0$

ℓ	0	1	2	3
$\int_{0}^{R_{0}}\left\|R_{n \ell}(r)\right\|^{2} d r$	0	$1 / 3$	$3 / 5$	$5 / 7$

Root-mean-square radius, $r_{r m s}$, of one neutron ; $r_{r m s} \equiv \sqrt{\left\langle r^{2}\right\rangle}$
In the limit of $\varepsilon_{n \ell}(<0) \rightarrow 0$

$$
\begin{aligned}
r_{r m s} \propto & \left(-\varepsilon_{n \ell}\right)^{-1 / 2} & \rightarrow \infty & \text { for } \ell=0 \\
& \left(-\varepsilon_{n \ell}\right)^{-1 / 4} & \rightarrow \infty & \text { for } \ell=1 \\
& \text { finite value } & & \text { for } \ell \geq 2
\end{aligned}
$$

Unique behavior of low- ℓ orbits, as $E_{n f j}(<0) \rightarrow 0$

Energies of neutron orbits in Woods-Saxon potentials as a function of potential radius

Neutron one-particle resonant and bound levels in spherical Woods-Saxon potentials Unique behavior of $\ell=0$ orbits, both for $\varepsilon_{n \ell j}<0$ and $\varepsilon_{n \ell j}>0$

One-particle resonant levels with width

$$
\begin{aligned}
& R_{\ell j}(r) \propto \sin \left(k r+\delta_{l j}-\ell \frac{\pi}{2}\right) \\
& \quad \text { for } \mathrm{r} \rightarrow \infty \text { and } k r \equiv r \sqrt{\frac{2 m \varepsilon}{\hbar^{2}}}
\end{aligned}
$$

width $\Gamma \equiv \frac{2}{\left.\frac{d \delta}{d \varepsilon}\right|_{\varepsilon=\varepsilon^{r s s}}}$

One-particle resonant level in spherical finite potentials (Coulomb potential)
For $\varepsilon_{\ell}>0$ and $r \rightarrow$ large

$$
R_{\ell}(r) \propto \cos \left(\delta_{\ell}\right) k r j_{\ell}(k r)-\sin \left(\delta_{\ell}\right) k r n_{\ell}(k r) \quad \text { where } \quad k^{2} \equiv \frac{2 m}{\hbar^{2}} \varepsilon_{\ell}
$$

$\delta_{\ell}:$ phase shift

The width of the resonance;

$$
\Gamma \equiv \frac{2}{\left.\frac{d \delta}{d \varepsilon}\right|_{\varepsilon=\varepsilon^{r e s}}}
$$

The resonance energy $\varepsilon^{r e s}$ is defined so that the phase shift δ_{ℓ} increases with energy ε as it goes through $\pi / 2$ (modulo π).

```
For example, see ; R.G.Newton, SCATTERING THEORY OF WAVES AND PARTICLES,
    McGraw-Hill, 1966.
```

 At \(\varepsilon^{\text {res } ; ~(1) ~ a ~ s h a r p ~ p e a k ~ i n ~ t h e ~ s c a t t e r i n g ~ c r o s s ~ s e c t i o n ; ~}\)
 (2) a significant time delay in the emergence of scattered particles;
 (3) the incoming wave (i.e. particles) can strongly penetrate into the system;
 (4)
 Resonance \leftrightarrow time delay $\left.\leftrightarrow \frac{d \delta_{\ell}}{d k}\right|_{k=k_{0}}>0$
scattering amplitude $\quad f(k, \cos \theta)=k^{-1} \sum_{\ell=0}^{\infty}(2 \ell+1) e^{i \delta_{\ell}} \sin \delta_{\ell} P_{\ell}(\cos \theta)$
For $r \rightarrow \infty$, a wave packet in a scattering is written as

$$
\int d \vec{k} \phi(\vec{k}) \exp [i(\vec{k} \cdot \vec{r}-E t)]+\int d \vec{k} \phi(\vec{k}) r^{-1} \exp [i(k r-E t)] f(k, \cos \theta)
$$

where $\phi(\vec{k})$: sharply peaked around $\vec{k}=\vec{k}_{0}$
Assume that at $\mathrm{k}=\mathrm{k}_{0}$ a sharp peak only in a given ℓ channel.
For very large $\mathrm{t}\left(=\right.$ time), the $2^{\text {nd }}$ term in (\$) contributes only at the distance

$$
r \cong \frac{k_{0}}{2 m} t-\left.\frac{d \delta_{\ell}}{d k}\right|_{k=k_{0}} \quad \left\lvert\, \begin{array}{rr}
\because) & \text { for } \quad k \approx k_{0} \\
& e^{i(k r-E t)} e^{i k(k)} \begin{aligned}
& i \delta_{\ell} \\
& d k \delta_{\ell=k_{0}}
\end{aligned} \\
=e^{i k\left(r+\left.\frac{d \delta_{\ell}}{d k}\right|_{k=k_{0}}-\frac{k}{2 m} t\right)}
\end{array}\right.
$$

Time delay caused by the sharply changing term $e^{i \delta_{\ell}}$ in the $f: \quad t_{D}=\left.\frac{2 m}{k_{0}} \frac{d \delta_{\ell}}{d k}\right|_{k=k_{0}}$

$$
\begin{aligned}
& \frac{d \delta_{\ell}}{d k}>0 \quad \rightarrow \text { time delay in the emergence of the scattered particles } \\
& \frac{d \delta_{\ell}}{d k}<0 \quad \rightarrow \text { time advance ! }
\end{aligned}
$$

β-stable nuclei

One-particle levels which contribute to many-body correlations

neutron drip line nuclei - role of continuum levels and weakly-bound levels

Importance of one-particle resonant levels with small width Γ in the many-body correlations.
Obs. no one-particle resonant levels for $s_{1 / 2}$ orbits.

A computer program to calculate one-neutron resonance (energy and width) in a spherical Woods-Saxon potential is available.

Is there anybody who wants to have it ?

Some summary of weakly-bound and positive-energy neutrons in spherical potentials ($\beta=0$)

Unique role played by neutrons with small ℓ; s, (p) orbits
(a) Weakly-bound small- ℓ neutrons have appreciable probability to be outside the potential;
ex. For a finite square-well potential and $\varepsilon_{n f j}(<0) \rightarrow 0$, the probability inside is
0 for s neutrons
1/3 for p neutrons
Thus, those neutrons are insensitive to the strength of the potential.
$\longrightarrow \quad$ Change of shell-structure
(b) No one-particle resonant levels for s neutrons.

Only higher-l neutron orbits have one-particle resonance with small width.
$\longrightarrow \quad$ Change of many-body correlation, such as pair correlation and deformation in loosely bound nuclei
2.2. Hartree-Fock (HF) approximation \rightarrow self-consistent mean-field

A mean-field approximation to the nuclear many-body problem with rotationally invariant Hamiltonian,

$$
\begin{gathered}
H=-\frac{\hbar^{2}}{2 m} \sum_{i} \Delta_{i}+\sum_{i<j} v_{i j} \\
\text { "effective" two-body interaction } \\
\text { phenomenology! }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Popular effective interaction, } v_{i j} \text {, is } \\
& \text { so-called Skyrme interaction }- \\
& \text { many different versions exist, but } \\
& \text { in essence, } \delta\left(\vec{r}_{i}-\vec{r}_{j}\right) \text { interaction } \\
& \text { plus density-dependent part that } \\
& \text { simulates the 3-body interaction. }
\end{aligned}
$$

The total wave function Ψ is assumed to be a form of Slater determinant consisting of one-particle wave-functions,

$$
\varphi_{i}\left(\vec{r}_{j}\right) \quad(i \text { and } j)=1,2, \ldots \ldots, A
$$

Variational principle $\quad \delta\langle\Psi| H|\Psi\rangle=0$
together with subsidiary conditions

$$
\int\left|\varphi_{i}\left(\vec{r}_{i}\right)\right|^{2} d^{3} r_{i}=1
$$

leads to the HF equation.

OBS. The HF solution Ψ is not an eigen function of the Hamiltonian H.
ex. HF equations for 2 particles (a simple example !) $\quad \Psi(1,2)=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}\varphi_{1}\left(\vec{r}_{1}\right) & \varphi_{2}\left(\vec{r}_{1}\right) \\ \varphi_{1}\left(\vec{r}_{2}\right) & \varphi_{2}\left(\vec{r}_{2}\right)\end{array}\right|$

$$
\left\{\begin{array}{l}
-\frac{\hbar^{2}}{2 m} \Delta \varphi_{1}\left(\bigcirc+\varphi_{1} \cap\right) \int \varphi_{2}^{* *}(\vec{r}) v\left(\vec{r}_{1}, \vec{r}\right) \varphi_{2}(\vec{r}) d^{3} r-\varphi_{2}\left(\vec{r}_{1}\right) \int \varphi_{2}^{*}(\vec{r}) v\left(\vec{r}_{1}, \vec{r}\right) \varphi_{1}\left(\cap d^{3} r=\varepsilon_{1} \varphi_{1} \cap\right) \\
\left.\left.-\frac{\hbar^{2}}{2 m} \Delta \varphi_{2}(\bigcirc)+\varphi_{2} \cap\right) \rho \varphi_{1}^{*}(\vec{r}) v\left(\vec{r}_{2}, \vec{r}\right) \varphi_{1}(\vec{r}) d^{3} r-\varphi_{1}\left(\vec{r}_{2}\right) \int \varphi_{1}^{*}(\vec{r}) v\left(\vec{r}_{2}, \vec{r}\right) \varphi_{2} \cap d^{3} r=\varepsilon_{2} \varphi_{2} \cap\right) \\
\text { exchange term (absent in Hartree approximation) }
\end{array}\right.
$$

Find the solutions, $\varphi_{1}(\vec{r})$ and $\varphi_{2}(\vec{r})$, with ε_{1} and ε_{2}, which satisfy simultaneously the above coupled equations.

The usual procedure of solving the HF equation is;

$$
\text { w.f. } \begin{gathered}
\varphi_{1}\left(\vec{r}_{1}\right) \\
\varphi_{2}\left(\vec{r}_{2}\right) \\
\end{gathered} \longrightarrow \begin{array}{lc}
\text { pot. } & V\left(\vec{r}_{1}\right) \\
& V\left(\vec{r}_{2}\right)
\end{array} \longrightarrow \text { w.f. } \begin{gathered}
\varphi_{1}\left(\vec{r}_{1}\right) \\
\varphi_{2}\left(\vec{r}_{2}\right)
\end{gathered} \longrightarrow
$$

Find self-consistent solutions together with eigenvalues, ε_{1} and ε_{2}.

Hartree-Fock potential and one-particle energy levels
$\mathrm{V}_{\mathrm{N}}(\mathrm{r})$: neutron potential, $\quad \mathrm{V}_{\mathrm{P}}(\mathrm{r})$: proton nuclear potential, $\mathrm{V}_{\mathrm{P}}(\mathrm{r})+\mathrm{V}_{\mathrm{C}}(\mathrm{r})$: proton total potential

A typical double-magic β-stable nucleus

$$
{ }_{82}^{208} P b_{126}
$$

One of Skyrme interactions ; SkM*
See : J.Bartel et al., Nucl. Phys. A386 (1982) 79.

Hartree-Fock potentials and one-particle energy levels
$V_{N}(r)$: neutron potential, $V_{P}(r)$: proton nuclear potential

3. Observation of deformed nuclei

3.1. Rotational spectrum and its implication

Some nuclei are deformed --- axially-symmetric quadrupole (Y20) deformation Observation:

1) rotational spectra $\quad \mathrm{E}(\mathrm{I}) \approx \mathrm{Al}(I+1)$
2) large quadrupole moment or large $(E 2 ;|\rightarrow|-2)$ transition probability

Observed E2-transition probabilities of the ground state $(\mathrm{l}=0$) to the first excited $2+$ state in stable even-even nuclei.

The single-particle value used as unit is

$$
B_{s p}(E 2)=\frac{5}{4 \pi} e^{2}\left(\frac{3}{5} R^{2}\right)^{2}=0.30 A^{4 / 3} e^{2} f m^{4}
$$

WARNING : many different definitions (and notations) of Y_{20} deformation parameters
$\delta \quad$ intrinsic quadrupole moment $\quad Q_{0}=\frac{4}{3}\left\langle\sum_{k=1}^{Z} r_{k}^{2}\right\rangle \delta$
$\delta=\frac{3}{2} \frac{\left(R_{3}\right)^{2}-\left(R_{\perp}\right)^{2}}{\left(R_{3}\right)^{2}+2\left(R_{\perp}\right)^{2}}$
$\beta \quad \beta_{2}$ is defined in terms of the expansion of the density distribution in spherical harmonics.

$$
\begin{array}{cl}
\text { radius } & R(\theta, \varphi)=R_{0}\left(1+\beta_{2} Y_{20}^{*}(\theta)+\ldots \ldots . .\right) \\
\text { density } & \rho(\vec{r})=\rho_{0}(r)-R_{0} \frac{\partial \rho_{0}}{\partial r}\left(\beta_{2} Y_{20}^{*}(\theta)+\ldots . .\right)
\end{array}
$$

$\delta_{\text {osc }}$ or $\varepsilon \quad$ In the deformed harmonic oscillator model it is customary to use

$$
\varepsilon=\quad \delta_{o s c} \equiv 3 \frac{\omega_{\perp}-\omega_{3}}{2 \omega_{\perp}+\omega_{3}} \approx \frac{R_{3}-R_{\perp}}{R_{a v}}
$$

To leading order, $\delta \approx \beta_{2} \approx \delta_{\text {osc }}$, but
$\delta_{n} \approx \delta_{p}$ for stable nuclei, but $\delta_{n}<\delta_{p}$ possibly for neutron-rich nuclei towards the neutron-drip-line, since $\left.\quad R_{n}>R_{p} \quad \because\right) \quad R_{n} \delta_{n} \approx R_{p} \delta_{p}$

Nuclei with deformed ground state close to the β stability line

Figure 4-3 Regions of deformed nuclei. The crosses represent even-even nuclei, whose

All single or double closed-shell nuclei are spherical.
some typical examples of deformed nuclei :
${ }^{12} \mathrm{C}_{6} \quad$ Oblate (pancake shape)
${ }^{20} \mathrm{Ne}_{10}$ Prolate (cigar shape)
rare-earth nuclei with $90 \leq N \leq 112$ mostly prolate

Some new region of deformed ground-state nuclei away from β stability line;

1) $\mathrm{N} \approx \mathrm{Z} \approx 38$ ex. $\quad{ }_{36}^{72} \mathrm{~K} r_{36}$ (oblate) ${ }_{38}^{76} \mathrm{Sr}_{38}$ (prolate ?) ${ }_{40}^{80}{ }_{40} \mathrm{rr}_{40}$ (prolate ?)
2) $N \approx 20$
ex. $\quad{ }_{10}^{30} N e_{20} \quad{ }_{12}^{32} M g_{20}$
("island of inversion")
3) $N \approx 8$
ex. $\quad{ }_{4}^{12} B e_{8} \quad{ }_{4}^{11} B e_{7}$
etc.

Deformed ground state of $N \approx Z$ nuclei (proton-rich compared with stable nuclei)
Coexistence of prolate and oblate shape :

Systematics of the light $\begin{aligned} & (Z=36) \\ & \text { krypton isotopes }\end{aligned}$

(A.Goergen, Gammapool workshop in Trento, 2006)

${ }_{38}^{76} S r_{38}$

${ }_{40}^{80} Z r_{40}$

Most probably prolate

OBS. Almost all stable nuclei
with $\mathrm{N}($ or Z$)=40$ are spherical.

Example of deformed excited states of magic nuclei

${ }_{20}^{40} \mathrm{Ca}_{20}$: doubly-magic nucleus, spherical ground state

ETG. 1. Patial level schente of ${ }^{40} \mathrm{Ca}$; the enetgr labels ate

From E.Ideguchi et al., Phys.Rev.Lett. 87 (2001) 222501.

Implication of rotational spectra :

(1) Existence of deformation (in the body-fixed system), so as to specify an orientation of the system as a whole.
(2) Collective rotation, as a whole, and internal motion w.r.t. the body-fixed system are approximately separated in the complicated many-body system.

Classical system : An infinitesimal deformation is sufficient to establish anisotropy.

Quantum system : [zero-point fluctuation of deformation] << [equilibrium deformation], in order to have a well-defined rotation.

Indeed,
collective rotation is the best established collective motion in nuclei.

For some nuclei Hartree-Fock (HF) calculations with rotationally-invariant Hamiltonian end up with a deformed shape!
spherical shape $\leftarrow \mathrm{HF}$ solutions for "closed-shell" nuclei
deformed shape $\leftarrow \mathrm{HF}$ solutions for some nuclei
exhibit rotational spectra
\therefore Deformed shape obtained from HF calculations is interpreted as the intrinsic structure (in the body-fixed system) of the nuclei.

The notion of one-particle motion in deformed nuclei can be, in practice, much more widely, in a good approximation, applicable than that in spherical nuclei.
\because) The major part of the long-range two-body interaction is already taken into account in the deformed mean-field.

Thus, the spectroscopy of deformed nuclei is often much simpler than that of spherical vibrating nuclei.

What can one learn from rotational spectra?

(a) Quantum numbers of rotational spectra \leftrightarrow symmetry of deformation
ex. Parity is a good quantum number \leftarrow space reflection invariance, K is a good quantum number \leftarrow Axially-symmetric shape $(E(I) \propto I(I+1))$,
where K is the projection of angular momentum along the symmetry axis.
The $\mathrm{K}=0$ rotational band has only $\mathrm{I}=0,2,4, \ldots \leftarrow$ shape is R - invariant, Kramers degeneracy \leftarrow time reversal invariance, etc.
(b) rotational energy, $\mathrm{E}(\mathrm{I})-\mathrm{E}(\mathrm{I}-2)\} \quad \leftrightarrow$ size of deformation

R-invariant shape : in addition to axially-symmetry, the shape is further invariant w.r.t. a rotation of π about an axis perpendicular to the symmetry axis. (If a shape is already axial symmetric, reflection invariance is equivalent to R-inv.) ex. Y_{20} deformed shape is R-invariant, but not Y_{30} deformed shape.

Kramers degeneracy : The levels in an odd-fermion system are at least doubly degenerate.

Why are some nuclei deformed?

Usual understanding ;
Deformation of ground states $\left(\mathrm{ND}_{2}, \mathrm{R}_{\perp}: \mathrm{R}_{\mathrm{z}} \approx 1: 1.3\right) \leftarrow$ Jahn-Teller effect

Many particles outside a closed shell in a spherical potential
\rightarrow near degeneracy in quantum spectra
\rightarrow possibility of gaining energy by breaking away from spherical symmetry using the degeneracy

Superdeformation (SD, $R_{\perp}: R_{z} \approx 1: 2$) at high spins in rare-earth nuclei or fission isomers in actinide nuclei
\leftarrow new shell structure (and new magic numbers !) at large deformation
3.2. Important deformation and quantum numbers in deformed nuclei

Axially symmetric quadrupole (Y20) deformation (plus R-symmetry)

- most important deformation in nuclei

$$
\begin{array}{ll}
R_{\perp}\left(=R_{x}=R_{y}\right)<R_{z} & \text { prolate (cigar shape) } \\
R_{\perp}\left(=R_{x}=R_{y}\right)>R_{z} & \text { oblate (pancake shape) }
\end{array}
$$

Axially-symmetric quadrupole-deformed harmonic-oscillator potential

$$
\begin{gathered}
H=T+V \quad \text { with } \quad V=\frac{M}{2}\left(\omega_{z}^{2} z^{2}+\omega_{\perp}^{2}\left(x^{2}+y^{2}\right)\right) \\
H\left|n_{x}, n_{y}, n_{z}\right\rangle=\varepsilon\left(n_{\perp}, n_{z}\right)\left|n_{x}, n_{y}, n_{z}\right\rangle \quad \text { where } \quad n_{\perp}=n_{x}+n_{y} \\
\varepsilon\left(n_{\perp}, n_{z}\right)=\left(n_{z}+\frac{1}{2}\right) \hbar \omega_{z}+\left(n_{\perp}+1\right) \hbar \omega_{\perp}=\hbar \varpi\left(N+\frac{3}{2}-\frac{\delta}{3}\left(3 n_{z}-N\right)\right) \\
\text { where } \quad \varpi=\frac{1}{3}\left(\omega_{z}+2 \omega_{\perp}\right) \quad \text { and } \quad N=n_{x}+n_{y}+n_{z}
\end{gathered}
$$

deformation parameter

$$
\delta \equiv 3 \frac{\omega_{\perp}-\omega_{z}}{2 \omega_{\perp}+\omega_{z}} \approx \frac{R_{z}-R_{\perp}}{R_{a v}}
$$

$$
\begin{array}{ll}
\delta>0 \rightarrow R_{z}>R_{\perp} & : \text { prolate } \\
\delta<0 \rightarrow R_{z}<R_{\perp} & \text { : oblate }
\end{array}
$$

One-particle spectrum of Y20-deformed harmonic-oscillator potential

$\varepsilon\left(N, n_{z}\right)=\hbar \sigma\left(N+\frac{3}{2}-\frac{\delta}{3}\left(3 n_{z}-N\right)\right)$

Figure 6-48 Single-particle spectrum for axpally symmetric harmonic oscillator potentials.
oblate
prolate
spherical symmetric
(1) At $\delta=0$: spherical,
$\varepsilon(N)=\hbar \varpi\left(n_{x}+n_{y}+n_{z}+\frac{3}{2}\right)=\hbar \varpi\left(N+\frac{3}{2}\right)$
degeneracy $(N+1)(N+2)$
(2) At $\delta \neq 0$
$\varepsilon(N)$ splits into $(N+1)$ levels, $\varepsilon\left(N, n_{z}\right)$
$\because)$

$$
n_{z}=0,1,2, \ldots \ldots ., N
$$

The level with $\varepsilon\left(N, n_{z}\right)$ has degeneracy

$$
\begin{aligned}
\because) N-n_{z} & =n_{\perp}=n_{x}+n_{y} \quad \text { and } \\
n_{y} & =0,1, \ldots \ldots, n_{\perp}
\end{aligned}
$$

(3) Note "closed shell" appears, when $\omega_{\perp}: \omega_{z}$ is a small integer ratio. \rightarrow large degeneracy ex. $\omega_{\perp}=2 \omega_{z} \rightarrow \varepsilon\left(N, n_{z}\right)=\hbar \omega_{z}\left(n_{z}+2 n_{\perp}+2+\frac{1}{2}\right)$
where one can have many combinations of integer $\left(n_{z}, n_{\perp}\right)$ values that give the same value of $\left(n_{z}+2 n_{\perp}\right)$.

One-particle Hamiltonian with spin-orbit potential
$H=T+V(r, \theta)$
$V(r, \theta)=V_{0}(r)+V_{2}(r) Y_{20}(\theta)+V_{\ell s}(r)(\vec{\ell} \cdot \vec{s})$
$Y_{20}(\theta)=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right)$
where θ is polar angle w.r.t. the symmetry axis (= z-axis)

Quantum numbers of one-particle motion in H
(1) Parity $\pi=(-1)^{\ell}$ where ℓ is orbital angular momentum of one-particle.
(2) $\Omega \leftarrow \ell_{z}+\mathrm{s}_{z} \quad \because$)

$$
\left[f(r) Y_{20}(\theta), \ell_{z}+s_{z}\right]=0 \quad \text { and } \quad\left[(\vec{\ell} \cdot \vec{s}), \ell_{z}+s_{z}\right]=0
$$

4. One-particle motion sufficiently bound in Y_{20} deformed potential

$$
V(r, \theta)=V_{0}(r)+\underline{V_{2}(r) Y_{20}(\theta)}+\underline{V_{t s}(r)(\vec{\rho} \cdot \vec{s})}
$$

4.1. Normal-parity orbits and/or large deformation

$$
H_{0}=\underline{T+\frac{M}{2}\left(\omega_{z}^{2} z^{2}+\omega_{\perp}^{2}\left(x^{2}+y^{2}\right)\right)} \quad H^{\prime}=V_{l s}(r)(\vec{\ell} \cdot \vec{s})
$$

$$
\left\langle V_{2}(r) Y_{20}(\theta)\right\rangle \gg\left\langle V_{t s}(r)(\vec{\ell} \cdot \vec{s})\right\rangle
$$

$$
\varepsilon\left(N, n_{z}\right)=\left(n_{z}+\frac{1}{2}\right) \hbar \omega_{z}+\left(n_{\perp}+1\right) \hbar \omega_{\perp} \quad \text { has } 2\left(n_{\perp}+1\right) \text { degeneracy. } \quad n_{\perp}=n_{x}+n_{y}
$$

The degeneracy can be resolved by specifying $n_{x}=0,1, \ldots, n_{\perp}$ for a given n_{\perp}. However, since $\left[H_{0}, \ell_{z}\right]=0, \quad\left(\ell_{z}: z\right.$-component of one-particle orbital angular momentum $)$, quantum number $\wedge\left(\leftarrow \ell_{z}\right)$ can be used to resolve the $\left(n_{\perp}+1\right)$ degeneracy. Possible values of Λ are $\Lambda= \pm n_{\perp}, \pm\left(n_{\perp}-2\right), \ldots \ldots, \pm 1$ or 0 . The basis $\left[n_{\perp}, n_{z,} \Lambda\right]$ is useful for $H^{\prime} \propto(\vec{\ell} \cdot \vec{s})$ Including spin, $\Sigma \leftarrow \mathrm{s}_{\mathrm{z}}, \quad\left\langle n_{\perp} n_{z} \Lambda \Sigma\right| H\left|n_{\perp} n_{z} \Lambda \Sigma\right\rangle=\varepsilon\left(n_{\perp}, n_{z}\right)+\left\langle n_{\perp} n_{z}\right| V_{\ell s}(r)\left|n_{\perp} n_{z}\right\rangle \Lambda \Sigma$

$$
\begin{array}{ll}
{\left[n_{\perp} n_{z} \Lambda \Sigma\right]} & \text { or } \quad\left[N n_{z} \wedge \Omega\right] \\
N=n_{\perp}+n_{z} \quad \text { and } \quad \Omega=\Lambda+\Sigma
\end{array}
$$ (Ω is an exact quantum-number)

Thus, in deformed nuclei it is customary to denote observed one-particle levels, or one-particle levels obtained from finite-well potentials, or HF one-particle levels etc.
by [$N n_{z} \wedge \Omega$], in which $\mid N n_{z} \wedge \Omega>$ is the major component of the wave functions.
Denote $\Omega>0$ value, though $\pm \Omega$ doubly degenerate (Kramers degeneracy).
ex. For deformation $\delta=0.3$ the proton one-particle wave-functions obtained by diagonalizing $H=T+V(r, \theta)$ with a ($\ell \cdot s)$ potential are
$|[4113 / 2]>=0.926| 4113 / 2>+\ldots=0.418\left|g_{9 / 2}>-0.140\right| g_{7 / 2}>+0.864\left|d_{5 / 2}>+0.246\right| d_{3 / 2}>$
$|[4111 / 2]>=0.900| 4111 / 2>+\ldots=-0.163\left|g_{9 / 2}>+0.396\right| g_{7 / 2}>-0.099\left|\mathrm{~d}_{5 / 2}>+0.848\right| \mathrm{d}_{3 / 2}>+0.297 \mid \mathrm{s}_{1 / 2}>$
$|[4001 / 2]>=0.968| 4001 / 2>+\ldots=0.147\left|g_{9 / 2}>-0.072\right| g_{7 / 2}>+0.539\left|d_{5 / 2}>-0.160\right| d_{3 / 2}>+0.811 \mid \mathrm{s}_{1 / 2}>$

$$
V(r, \theta)=V_{0}(r)+\underline{V_{2}(r) Y_{20}(\theta)}+\underline{V_{t s}(r)(\vec{\ell} \cdot \vec{s})}
$$

4.2. high-j orbits and/or small deformation $\quad\left\langle V_{2}(r) Y_{20}(\theta)\right\rangle \ll\left\langle V_{\ell s}(r)(\vec{\ell} \cdot \vec{s})\right\rangle$
those pushed down by $(\vec{\ell} \cdot \vec{S})$ potential :
ex. $g_{9 / 2}, h_{11 / 2}, i_{13 / 2}, \ldots$
j (= one-particle angular momentum) is approximately a good quantum number.

$$
\begin{gathered}
H_{0}=T+V_{0}+V_{\ell s}(r)(\vec{\ell} \cdot \vec{s}) \\
H^{\prime}=V_{2}(r) Y_{20}(\theta)
\end{gathered}
$$

$$
(i=11 / 2)
$$

For a single-j shell,

$$
\begin{aligned}
& H_{0} \mid \ell j>=\varepsilon_{0}(\ell j) \mid \ell j> \\
& H \mid \ell j \Omega>=\varepsilon(\ell j \Omega) \mid \ell j \Omega> \\
& \varepsilon(\ell j \Omega)=\varepsilon_{0}(\ell j)+<\ell j \Omega\left|H^{\prime}\right| \ell j \Omega> \\
&=\varepsilon_{0}(\ell j)+\frac{3 \Omega^{2}-j(j+1)}{4 j(j+1)} \frac{\langle\ell j|-\sqrt{\frac{5}{4 \pi}} V_{2}(r)|\ell j\rangle}{\| l} \\
& \text { deformation parameter }
\end{aligned}
$$

spherical: $(2 \mathrm{j}+1)$ degeneracy $\rightarrow \mathrm{Y}_{20}$ deformed $: \pm \Omega$ degeneracy
4.3. "Nilsson diagram" - one-particle spectra as a function of deformation

Diagonalize $H=T+V(r, \theta)$
where

$$
V(r, \theta)=V_{0}(r)+\underline{V_{2}(r) Y_{20}(\theta)}+\underline{V_{\ell s}(r)(\vec{\ell} \cdot \vec{s})}
$$

Levels are doubly degenerate with $\pm \Omega$.
(π, Ω) : exact quantum numbers.

Levels with a given (π, Ω) interact !
i.e. levels with the same (π, Ω) never cross !

Proton orbits in prolate potential ($50<Z<82$).

$g_{7 / 2}, d_{5 / 2}, d_{3 / 2}$ and $s_{1 / 2}$ orbits, which have $\pi=+$, do not mix with $h_{11 / 2}$ by Y_{20} deformation.
$h_{11 / 2}$ orbit $=$ high-j orbit with $\pi=-$

Intrinsic configuration in the body-fixed system

Low-lying states in deformed odd-A nuclei may well be understood in terms of the $\left[\mathrm{Nn}_{\mathrm{z}} \wedge \Omega\right]$ orbit of the last unpaired particle.

Good approximation ;

(a) In the ground state of eve-even nuclei

$$
K \equiv \sum_{i=1}^{A} \Omega_{i}=0
$$

Namely, $\pm \Omega$ levels are pair-wise occupied.
(b) In low-lying states of odd-A nuclei

$$
K \equiv \sum_{i=1}^{A} \Omega_{i} \Rightarrow \Omega \text { of the last unpaired particle. }
$$

ex. The $N=13$ th neutron orbit is seen in low-lying excitations in ${ }^{25} \mathrm{Mg}_{13}$

Figuro 5-15 Spectra of ${ }^{25} \mathrm{Mg}$ and ${ }^{25} \mathrm{Al}$. The resognition of rotational ba
Note (a) $I \geq K\left(\leftarrow I_{3}\right)$
(b) the bandhead state has $I=K$.

Exception may occur for $K=1 / 2$ bands.
(c) some irregular rotational spectra are observed for $K=1 / 2$ bands.

1) Leading-order E2 and M1 intensity relation works pretty well
$\rightarrow Q_{0} \approx+50 \mathrm{fm}^{2} \rightarrow \delta \approx 0.4$
$\left(g_{K}-g_{R}\right) \approx 1.4$ for $[2025 / 2]$ etc.
ex. $\quad{ }_{4}^{11} B e_{7} \quad(\mathrm{~N}=7)$

$$
S_{n}=504 \mathrm{keV}
$$

$$
1 / 2-\longrightarrow 319.8
$$

$$
1 / 2+\sim 0 \begin{gathered}
\text { (i.e. neutron binding } \\
\text { energy }=504 \mathrm{keV} \text {) }
\end{gathered}
$$

The observed spectra can be easily understood if the deformation $\delta \sim 0.6$. Indeed, the observed deformation in ${ }^{12} \mathrm{Be}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$ is $\beta \sim 0.7$.

$$
N=8 \text { is not a magic number! }
$$

An additional element:
weakly-bound [220 1⁄2]
\rightarrow major component becomes $\mathrm{s}_{1 / 2}$ (halo)
\rightarrow one-particle energy is pushed down relative to $p_{1 / 2}$
In the spherical shell-model the above $1 / 2+$ state must be interpreted as the 1 -particle (in the sd-shell) 2-hole (in the p-shell) state, which was pushed down below the $1 / 2$ - state (1 -hole in the p-shell) due to some residual interaction.

Table 1.

Selection rule of one－particle operators between one－particle states

 with exact quantum numbers $\left(\mathrm{N}_{\mathrm{z}} \wedge \Omega\right)$ ．Matrix elements of the most important operators in the asymptotic basis，and their selection rules

Operator $O \Delta N$		ΔN_{z}	$\Delta \Lambda$	$\Delta \Sigma$	$\Delta \Omega$	$\left\langle N^{\prime} N_{z}^{\prime} \Lambda^{\prime}\right\| O\left\|N N_{z} \Lambda\right\rangle$
$l_{t} \cdot \boldsymbol{s}$	0	0	0	0	0	4Σ
	0	1	± 1	F1	0	$-\frac{1}{6}\left(\frac{1}{2} \pm \Sigma\right)\left[\left(N_{s}+1\right)\left(N-N_{2} \mp \Lambda\right)\right]^{\frac{1}{2}}$
	0	－1	± 1	∓ 1	0	$-\frac{1}{2}\left(\frac{1}{2} \pm \Sigma\right)\left[N_{z}\left(N-N_{z} \pm \Lambda+2\right)\right]^{2}$
$t_{i}{ }^{2}$	0	0	0	0	0	$\Lambda^{2}+\Lambda+2\left[N_{z}\left(N-N_{z}+1\right)\right]+\left(N-N_{z}-\Lambda\right)$
	0	2	0	0	0	［ $\left.\left(N_{z} \mid 1\right)\left(N_{z} \mid 2\right)\left(N \cdot N_{z}+\Lambda\right)\left(N-N_{z}-\Lambda\right)\right] 4$
	0	-2	0	0	0	$\left[N_{z}\left(N_{z}-1\right)\left(N-N_{z}+\Lambda+2\right)\left(N-N_{z}-\Lambda+2\right)\right] \frac{1}{2}$
z^{\prime}	± 1	± 1	0	0	0	$c_{z}\left[\frac{1}{2}\left(N_{z} \mathrm{sup}\right)\right]^{t}$
$x^{\prime} \pm i y^{\prime}$	$+1$	0	± 1	0	± 1	$+c_{\perp}\left[\frac{1}{2}\left(N-N_{x}+\Lambda+2\right)\right]^{\frac{1}{2}}$
	-1	0	± 1	0	± 1	$\mp c_{\perp}\left[\frac{1}{\frac{1}{2}}\left(N-N_{x} \mp \Lambda\right)\right)^{2}$
$z^{\prime 2}$	0	0	0	0	0	$c_{z}{ }^{2}\left(N_{z}+\frac{1}{2}\right)$
	2	2	0	0	0	$\left.\frac{1}{\frac{1}{2}} c_{z}^{2}{ }^{2}\left(N_{x}+1\right)\left(N_{z}+2\right)\right]^{\frac{1}{2}}$
	－2	－2	0	0	0	$\frac{1}{z} c_{z}^{2}\left[N_{z}\left(N_{x}-1\right)\right]^{\frac{1}{2}}$
$x^{2}+y^{\prime 2}$	0	0	0	0	0	$c_{\perp}{ }^{2}\left(N-N_{z}+1\right)$
	2	0	0	0	0	$-\frac{1}{2} c_{\perp}{ }^{2}\left[\left(N-N_{z}+\Lambda+2\right)\left(N-N_{z}-\Lambda+2\right)\right] \frac{1}{2}$
	－2	0	0	0	0	$-\frac{1}{2} c_{\perp}^{2}{ }^{2}\left[\left(N-N_{z}+\Lambda\right)\left(N-N_{z}-\Lambda\right)\right]^{\frac{1}{2}}$
$z^{\prime}\left(x^{\prime} \pm i y^{\prime}\right)$	0	1	± 1	0	± 1	干 $\frac{1}{2} c_{1} c_{z}\left[\left(N_{z}+1\right)\left(N-N_{z} \mp \Lambda\right)\right]^{\frac{1}{2}}$
	0	－1	± 1	0	± 1	$\pm \frac{1}{8} c_{1} c_{z}\left[N_{z}\left(N-N_{z} \pm \Lambda+2\right)\right]^{\frac{1}{2}}$
	2	1	± 1	0	± 1	$\pm \frac{1}{2} c_{1} c_{z}\left[\left(N_{z}+1\right)\left(N-N_{x} \pm \Lambda+2\right)\right]^{\frac{1}{2}}$
	－2	－1	± 1	0	± 1	干䨖 $c_{1} c_{z}\left[N_{z}\left(N-N_{z} \mp A\right)\right]^{\frac{1}{2}}$
$\left(x^{\prime} \pm i y^{\prime}\right)^{2}$	0	0	± 2	0	± 2	$-c_{1}{ }^{2}\left[\left(N-N_{z} \mp \Lambda\right)\left(N-N_{z} \pm \Lambda+2\right)\right]^{\frac{1}{2}}$
	2	0	± 2	0	± 2	$\frac{1}{\frac{1}{2}} c_{\perp}^{2}\left[\left(N-N_{z} \pm \Lambda+2\right)\left(N-N_{z} \pm \Lambda+4\right)\right]^{\frac{1}{2}}$
	－2	0	± 2	0	± 2	$\left.\frac{1}{\frac{1}{2} c_{\perp}^{2}}{ }^{2}\left(N-N_{z} \mp \Lambda\right)\left(N-N_{z} \mp \Lambda-2\right)\right]^{\frac{1}{2}}$
$l_{\text {r }}$	0	0	0	0	0	Λ
	0	1	± 1	0	± 1	$-\mathscr{S}\left[\left(N_{\mathrm{x}}+\mathrm{i}\right)\left(N-N_{z} \mp 1\right)\right]^{4}$
$l_{x} \pm i l_{y}$	0	－1	± 1	0	± 1	$-\mathscr{S}\left[N_{z}\left(N-N_{z} \pm \Lambda+2\right)\right]^{t}$
	2	1	± 1	0	± 1	$\mathscr{D}\left[\left(N_{z}+1\right)\left(N-N_{z} \pm \Lambda+2\right)\right]^{\frac{1}{2}}$
	－2	-1	± 1	0	± 1	$\mathscr{D}\left[N_{z}\left(N-N_{z} \mp A\right)\right]^{ \pm}$
s_{τ}	0	0	0	0	0	Σ
$s_{x} \pm i s_{y}$	0	0	0	± 1	± 1	$\left[\left(\frac{1}{2} \mp \Sigma\right)\left(\frac{1}{2} \pm \Sigma+1\right)\right]^{\frac{1}{2}}$

If you use this kind of tables，you must be careful about the sign of the non－diagonal matrix elements， which depends on the phase convention of wave functions ！

Table 2.

$$
\begin{gathered}
|(\ell s) j, \Omega\rangle \equiv \frac{1}{r} R_{\ell j}(r) \sum_{m_{2} m_{s}} C\left(\ell, 1 / 2, j ; m_{\ell} m_{s} \Omega\right) Y_{\ell m_{\ell}}(\theta, \phi) \chi_{1 / 2, m_{s}} \\
\left\langle\ell_{2} j_{2}\right| r^{\lambda}\left|\ell_{1} j_{1}\right\rangle \equiv \int_{0}^{\infty} d r R_{\ell_{2} j_{2}}(r) R_{\ell_{1,1}}(r) r^{\lambda}
\end{gathered}
$$

Matrix-elements of one-particle operators in $\mid(\ell \mathrm{s}) \mathrm{j}, \Omega$, representations

$$
\begin{aligned}
& \left\langle\left(\ell_{2} s\right) j_{2}, \Omega\right| r^{\lambda} Y_{\lambda 0}\left|\left(\ell_{1} s\right) j_{1}, \Omega\right\rangle \\
& =\delta\left((-1)^{\ell_{1}+\ell_{2}},(-1)^{\lambda}\right)\left\langle\ell_{2} j_{2}\right| r^{\lambda}\left|\ell_{1} j_{1}\right\rangle(-1)^{j_{1}+j_{2}+1+\lambda}(-1)^{\Omega-\frac{1}{2}} \sqrt{\frac{\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)}{4 \pi(2 \lambda+1)}} \\
& C\left(j_{2} j_{1} \lambda ; 1 / 2,-1 / 2,0\right) \quad C\left(j_{2} j_{1} \lambda ; \Omega,-\Omega, 0\right)
\end{aligned}
$$

$$
\left\langle\left(\ell_{2} s\right) j_{2}, \Omega+1\right| r^{\lambda} Y_{\lambda 1}\left|\left(\ell_{1} s\right) j_{1}, \Omega\right\rangle
$$

$$
\left.\left.=\delta\left((-1)^{\ell_{1}+\ell_{2}},(-1)^{\lambda}\right)\right) \ell_{2} j_{2}\left|r^{\lambda}\right| \ell_{1} j_{1}\right\rangle(-1)^{j_{1}+j_{2}+1+\lambda}(-1)^{\Omega-1 / 2} \sqrt{\frac{\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)}{4 \pi(2 \lambda+1)}}
$$

$$
C\left(j_{2} j_{1} \lambda ; 1 / 2,-1 / 2,0\right) \quad C\left(j_{2} j_{1} \lambda ; \Omega+1,-\Omega, 1\right)
$$

$$
=(-1)\left\langle\left(\ell_{1} s\right) j_{1}, \Omega\right| r^{\lambda} Y_{\lambda-1}\left|\left(\ell_{2} s\right) j_{2}, \Omega+1\right\rangle
$$

$$
\left\langle\left(\ell_{2} s\right) j_{2}, \Omega+2\right| r^{\lambda} Y_{\lambda 2}\left|\left(\ell_{1} s\right) j_{1}, \Omega\right\rangle
$$

$$
=\delta\left((-1)^{\ell_{1}+\ell_{2}},(-1)^{\lambda}\right)\left\langle\ell_{2} j_{2}\right| r^{\lambda}\left|\ell_{1} j_{1}\right\rangle(-1)^{j_{1}+j_{2}+1+\lambda}(-1)^{\Omega-1 / 2} \sqrt{\frac{\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)}{4 \pi(2 \lambda+1)}}
$$

$$
C\left(j_{2} j_{1} \lambda ; 1 / 2,-1 / 2,0\right) \quad C\left(j_{2} j_{1} \lambda ; \Omega+2,-\Omega, 2\right)
$$

$$
=\left\langle\left(\ell_{1} s\right) j_{1}, \Omega\right| r^{\lambda} Y_{\lambda-2}\left|\left(\ell_{2} s\right) j_{2}, \Omega+2\right\rangle
$$

$\left(s_{ \pm}=s_{x} \pm i s_{y} \quad\right.$ etc. $)$

$$
\left\langle\ell_{2} j_{2} \mid \ell_{1} j_{1}\right\rangle \equiv \int_{0}^{\infty} d r R_{\ell \ell_{2} j_{2}}(r) R_{\ell j_{1} j_{1}}(r)
$$

$$
\left\langle\left(\ell_{2} s\right) j_{2}, \Omega+1\right| s_{+}\left|\left(\ell_{1} s\right) j_{1}, \Omega\right\rangle
$$

$$
=\delta\left(\ell_{1}, \ell_{2}\right)(-1)^{\ell_{1}+j_{1}+1 / 2} \sqrt{3\left(2 j_{1}+1\right)} C\left(j_{1}, 1, j_{2} ; \Omega, 1, \Omega+1\right) W\left(1 / 2, j_{2}, 1 / 2, j_{1} ; \ell_{1} 1\right)\left\langle\ell_{2} j_{2} \mid \ell_{1} j_{1}\right\rangle
$$

$$
\left\langle\left(\ell_{2} s\right) j_{2}, \Omega+1\right| \ell_{+}\left|\left(\ell_{1} s\right) j_{1}, \Omega\right\rangle
$$

$$
=\delta\left(\ell_{1}, \ell_{2}\right)(-1)^{\ell_{1}+j_{2}-1 / 2} \sqrt{2\left(2 j_{1}+1\right)} \sqrt{\ell_{1}\left(\ell_{1}+1\right)\left(2 \ell_{1}+1\right)} C\left(j_{1} j_{2} ; \Omega, 1, \Omega+1\right) \quad W\left(\ell_{2} j_{2} \ell_{1} j_{1} ; 1 / 2,1\right)
$$

$$
\left\langle\ell_{2} j_{2} \mid \ell_{1} j_{1}\right\rangle
$$

$\left\langle\left(\ell_{2} s\right) j_{2}, \Omega+1\right| j_{+}\left|\left(\ell_{1} s\right) j_{1}, \Omega\right\rangle=\delta\left(j_{1}, j_{2}\right) \sqrt{(j-\Omega)(j+\Omega+1)}\left\langle\ell_{2} j_{2} \mid \ell_{1} j_{1}\right\rangle$
$\left\langle\left(\ell_{2} s\right) j_{2}, \Omega\right| s_{z}\left|\left(\ell_{1} s\right) j_{1}, \Omega\right\rangle$
$=\delta\left(\ell_{1}, \ell_{2}\right)(-1)^{\ell_{1}+j_{1}-1 / 2} \sqrt{\frac{3\left(2 j_{1}+1\right)}{2}} C\left(j_{1}, 1, j_{2} ; \Omega, 0, \Omega\right) W\left(1 / 2, j_{2}, 1 / 2, j_{1}, \ell_{1} 1\right)\left\langle\ell_{2} j_{2} \mid \ell_{1} j_{1}\right\rangle$
$\left\langle\left(\ell_{2} s\right) j_{2}, \Omega\right| \ell_{z}\left|\left(\ell_{1} s\right) j_{1}, \Omega\right\rangle$

$$
=\delta\left(\ell_{1}, \ell_{2}\right)(-1)^{\ell_{1}+j_{2}+1 / 2} \sqrt{2 j_{1}+1} \sqrt{\ell_{1}\left(\ell_{1}+1\right)\left(2 \ell_{1}+1\right)} C\left(j_{1} 1 j_{2} ; \Omega 0 \Omega\right) W\left(\ell_{2} j_{2} \ell_{1} j_{1} ; 1 / 2,1\right)
$$

$$
\left\langle\ell_{2} j_{2} \mid \ell_{1} j_{1}\right\rangle
$$

Table 2 (continued)

Phase convention in wave functions - important in non-diagonal matrix-elements

1) ($\ell \mathrm{s}) \mathrm{j}$ or $(\mathrm{s} \ell) \mathrm{j} ; \quad|(s \ell) j\rangle=(-1)^{\frac{1}{2} \ell \ell-j}|(\ell s) j\rangle$
2) $\quad Y_{\ell m_{\ell}}(\theta, \phi) \quad$ or $\quad i^{\ell} Y_{\ell m_{\ell}}(\theta, \phi)$
3) $R_{\ell j}(r)\left\{\begin{array}{l}>0(\text { or }<0) \text { for } r \rightarrow 0, \quad \text { or } \\ >0(\mathrm{or}<0) \text { for } r \rightarrow \text { very large, or } \\ \text { output of computers }\end{array}\right.$
5. Weakly-bound and one-particle resonant neutron levels in Y20 deformed potential
harmonic-oscillator potential

Well-bound one-particle levels in deformed potential

One-particle levels in $\left(\mathrm{Y}_{20}\right)$ deformed harmonic oscillator potentials
$\left[\mathrm{N} n_{z} \wedge \Omega\right]$
asymptotic quantum numbers

Parity $\pi=(-1)^{N}$
Each levels are doubly-degenerate with $\pm \Omega$

6 doubly-degenerate levels in sd-shell
$\left.\begin{array}{ll}3 & \Omega^{\pi}=1 / 2^{+}\left(\ell_{\text {min }}=0\right) \\ 2 & \Omega^{\pi}=3 / 2^{+} \\ 1 & \left.\Omega_{\text {min }}=2\right) \\ 1 & \Omega^{\pi}=5 / 2^{+}\left(\ell_{\text {min }}=2\right)\end{array}\right\} 12$ particles
A.Bohr and B.R.Mottelson, vol.2, Figure 5-1.

5.1. Weakly-bound neutrons

Radial wave functions of the [200 $1 / 2$] level in Woods-Saxon potentials

(The radius of potentials is adjusted to obtain respective eigenvalues ε_{Ω}.)

Bound state with $\varepsilon_{\Omega}=-8.0 \mathrm{MeV}$.

Similar behavior to wave functions in harmonic osc. potentials.

Bound state with $\varepsilon_{\Omega}=-0.0001 \mathrm{MeV}$.

Wave functions unique in finite-well potentials.

W-S potential parameters are fixed except radius R.

Deformed halo nuclei

, irrespective of the size of deformation and the kind of one-particle orbits.
The rotational spectra of deformed halo nuclei must come from the deformed core.

For $\varepsilon \rightarrow 0$, the s-dominance will appear in all $\Omega^{\pi}=1 / 2^{+}$bound orbits. However, the energy, at which the dominance shows up, depends on both deformation and respective orbits.
ex. three $\Omega^{\pi}=1 / 2^{+}$Nilsson orbits in the sd-shell ;

5.2. One-particle resonant levels - eigenphase formalism

Radial wave functions of the [200 $1 / 2]$ level $\quad\left[\begin{array}{lllll} & s_{1 / 2} & ---d_{3 / 2} & \cdots & \\ \hline\end{array}\right] d_{512}$

The potential radius is adjusted to obtain respective eigenvalue ($\varepsilon_{\Omega}<0$) and resonance ($\varepsilon_{\Omega}>0$). Resonant state with $\varepsilon_{\Omega}=+100 \mathrm{keV}$

Existence of resonance $\leftarrow d$ component Width of resonance \leftarrow s component

OBS. Relative amplitudes of various components inside the potential remain nearly the same for $\varepsilon_{\Omega}=-0.1 \mathrm{keV} \rightarrow+100 \mathrm{keV}$.

Relative probability of $\mathrm{s}_{1 / 2}$ component inside the W-S potential

$$
P\left(s_{1 / 2}\right)=\frac{\left\langle s_{1 / 2}\right| V(r)\left|s_{1 / 2}\right\rangle}{\left\langle d_{5 / 2}\right| V(r)\left|d_{5 / 2}\right\rangle+\left\langle d_{3 / 2}\right| V(r)\left|d_{3 / 2}\right\rangle+\left\langle s_{1 / 2}\right| V(r)\left|s_{1 / 2}\right\rangle}
$$

In order that one-particle resonance continues for $\varepsilon_{\Omega}>0$, $\mathrm{P}\left(\mathrm{s}_{1 / 2}\right)$ at $\varepsilon_{\Omega}=0$ must be smaller than some critical value.
The critical value depends on the diffuseness of the potential.

One-particle shell-structure change for $\varepsilon_{\Omega}(<0) \rightarrow 0$ produces the large change of $P\left(s_{1 / 2}\right)$ values of respective [$\mathrm{N} \mathrm{n}_{\mathrm{z}} \wedge \Omega$] orbits as $\varepsilon_{\Omega}(<0) \rightarrow 0$.

Positive-energy neutron levels in Y_{20}-deformed potentials

$$
\begin{array}{lll}
\Omega^{\pi}=1 / 2^{+} & \mathrm{s}_{1 / 2}, \mathrm{~d}_{3 / 2}, \mathrm{~d}_{5 / 2}, \mathrm{~g}_{7 / 2}, \mathrm{~g}_{9 / 2}, \ldots ., \text { components } & \ell_{\text {min }}=0 \\
\Omega^{\pi}=3 / 2^{+} & \mathrm{d}_{3 / 2}, \mathrm{~d}_{5 / 2}, \mathrm{~g}_{7 / 2}, \mathrm{~g}_{9 / 2}, \ldots ., \text { components } & \ell_{\text {min }}=2 \\
\Omega^{\pi}=1 / 2^{-} & \mathrm{p}_{1 / 2}, \mathrm{p}_{3 / 2}, \mathrm{f}_{5 / 2}, \mathrm{f}_{7 / 2}, \mathrm{~h}_{9 / 2}, \ldots ., \text { components } & \ell_{\text {min }}=1 \\
\text { etc. } & &
\end{array}
$$

The component with $\ell=\ell_{\text {min }}$ plays a crucial role in the properties of possible one-particle resonant levels.
(Among an infinite number of positive-energy one-particle levels, one-particle resonant levels are most important in the construction of many-body correlations of nuclear bound states.)

For $\varepsilon_{\Omega}<0$
Do not restrict the system in a finite box !

$$
R_{\ell j \Omega}(r) \propto r h_{\ell}\left(\alpha_{b} r\right) \quad \text { for } \quad r \rightarrow \infty
$$

where

$$
h_{\ell}(-i z) \equiv j_{\ell}(z)+i n_{\ell}(z) \quad \text { and } \quad \alpha_{b}^{2} \equiv-\frac{2 m \varepsilon_{\Omega}}{\hbar^{2}}
$$

For $\quad \varepsilon_{\Omega}>0$

$$
\begin{aligned}
R_{\ell j \Omega}(r) & \propto \cos \left(\delta_{\Omega}\right) r j_{\ell}\left(\alpha_{c} r\right)-\sin \left(\delta_{\Omega}\right) r n_{\ell}\left(\alpha_{c} r\right) \quad \text { for } \quad r \rightarrow \infty \\
& \rightarrow \sin \left(\alpha_{c} r+\delta_{\Omega}-\ell \frac{\pi}{2}\right)
\end{aligned}
$$

where

$$
\alpha_{c}^{2} \equiv \frac{2 m}{\hbar^{2}} \varepsilon_{\Omega}
$$

$\delta_{\Omega} \quad$ expresses eigenphase.

> A.U.Hazi, Phys.Rev.A19, 920 (1979).
> K.Hagino and Nguyen Van Giai, Nucl.Phys.A735, 55 (2004).

A given eigenchannel : asymptotic radial wave-functions behave in the same way for all angular momentum components.

A one-particle resonant level with ε_{Ω} is defined so that one eigenphase δ_{Ω} increases through (1/2) π as ε_{Ω} increases.

When one-particle resonant level in terms of one eigenphase is obtained, the width Γ of the resonance is calculated by

$$
\Gamma \equiv \frac{2}{\left[\frac{d \delta_{\Omega}}{d \varepsilon_{\Omega}}\right]_{\varepsilon_{\Omega}=\varepsilon_{\Omega}^{r s s}}}
$$

Some comments on eigenphase ;

1) For a given potential and a given ε_{Ω} there are several (in principle, an infinite number of) solutions of eigenphase δ_{Ω}.
2) The number of eigenphases for a given potential and a given ε_{Ω} is equal to that of wave function components with different (ℓ, j) values.
3) The value of δ_{Ω} determines the relative amplitudes of different (ℓ, j) components.
4) In the region of small values of ε_{Ω} (>0), only one of eigenphases varies strongly as a function of ε_{Ω}, while other eigenphases remain close to the values of $n \pi$.

In the limit of $\beta \rightarrow 0$, the definition of one-particle resonance in eigenphase formalism
\rightarrow the definition in spherical potentials found in text books.

Variation of all three eigenphases ($s_{1 / 2}, d_{3 / 2}$ and $d_{5 / 2}$ levels are included in the coupled channels.)

No weakly-bound Nilsson level is present for this potential.

A weakly-bound Nilsson level is present for this potential.
5.3. Examples of Nilsson diagrams for light neutron-rich nuclei

$$
\begin{aligned}
& \text { 1. } \sim{ }^{\sim}{ }^{17} \mathrm{C}_{11}(\mathrm{~S}(\mathrm{n})=0.73 \mathrm{MeV}, \\
&\text { 2. } \left.\sim^{31} / 2^{+}\right) \\
& \sim{ }^{31} \mathrm{Mg}_{19}(\mathrm{~S}(\mathrm{n})=2.38 \mathrm{MeV}, \\
& \sim{ }^{33} \mathrm{Mg}_{21}(\mathrm{~S}(\mathrm{n})=2.22 \mathrm{MeV}, \\
& \hline
\end{aligned}
$$

Near degeneracy of some weakly-bound or resonant levels in spherical potential, unexpected from the knowledge on stable nuclei

- the origin of deformation and

Jahn-Teller effect

$$
\varepsilon\left(1 \mathrm{f}_{5 / 2}\right)=+8.96 \mathrm{MeV}
$$

(ex. not appropriate for including the rotational perturbation of intrinsic states)

Rotational operator $R(\Omega) \quad \Omega$: Euler angles (α, β, γ)

$$
R(\Omega) \equiv e^{-i \alpha J_{z}} e^{-i \beta J_{y}} e^{-i \gamma J_{z}}
$$

Rotation matrix $\quad D_{M M}^{J}(\Omega)$

$$
\langle\alpha J M| R(\Omega)\left|\alpha^{\prime} J^{\prime} M^{\prime}\right\rangle=\delta\left(\alpha, \alpha^{\prime}\right) \delta\left(J, J^{\prime}\right) D_{M M^{\prime}}^{J}(\Omega)
$$

Inverting the expression

$$
R(\Omega)=\sum_{\alpha J}|\alpha J M\rangle D_{M M^{\prime}}^{J}(\Omega)\left\langle\alpha J M^{\prime}\right|
$$

Multiplying by $D_{M M}^{J}{ }^{*}(\Omega)$ and integrating over Ω, we obtain a projection operator

$$
P_{M}^{J} \equiv \sum_{\alpha}|\alpha J M\rangle\langle\alpha J M|=\frac{2 J+1}{8 \pi^{2}} \int d \Omega D_{M M}^{J}{ }^{*}(\Omega) R(\Omega)
$$

We need to calculate the expressions

$$
\begin{aligned}
& \langle\phi| P_{M}^{J}|\phi\rangle=\frac{2 J+1}{8 \pi^{2}} \int d \Omega D_{M M}^{J}{ }^{*}(\Omega)\langle\phi| R(\Omega)|\phi\rangle \\
& \langle\phi| H P_{M}^{J}|\phi\rangle=\frac{2 J+1}{8 \pi^{2}} \int d \Omega D_{M M}^{J}{ }^{*}(\Omega)\langle\phi| H R(\Omega)|\phi\rangle
\end{aligned}
$$

Appendix

If $|\phi\rangle$ is axially symmetric, $\quad J_{z}|\phi\rangle=M|\phi\rangle$

$$
\begin{aligned}
& \langle\phi| R(\Omega)|\phi\rangle=e^{-i \alpha M}\langle\phi| e^{-i \beta J_{y}}|\phi\rangle e^{-i \gamma M} \\
& D_{M M}^{J}(\Omega)=e^{-i \alpha M}\langle J M| e^{-i \beta J_{y}}|J M\rangle e^{-i \gamma M}
\end{aligned}
$$

then, using the "reduced rotation matrix" $\quad d_{M M}^{J}(\theta)=\langle J M| e^{-i \theta J_{y}}\left|J M^{\prime}\right\rangle$

$$
\begin{aligned}
& \langle\phi| P_{M}^{J}|\phi\rangle=\frac{2 J+1}{2} \int_{0}^{\pi} d \theta \sin \theta d_{M M}^{J}(\theta)\langle\phi| e^{-i \theta J_{y}}|\phi\rangle \\
& \langle\phi| H P_{M}^{J}|\phi\rangle=\frac{2 J+1}{2} \int_{0}^{\pi} d \theta \sin \theta d_{M M}^{J}(\theta)\langle\phi| H e^{-i \theta J_{y}}|\phi\rangle
\end{aligned}
$$

$$
\langle\phi| e^{-i \theta J_{y}}|\phi\rangle\left\{\begin{array}{l}
\approx 1 \text { for } \theta \ll 1, \\
\text { decreases quickly as } \theta \rightarrow \text { larger } \\
\text { is symmetric about } \theta=\pi / 2
\end{array}\right.
$$

