RIKEN Lecture January 6, 2006

Description of Nuclei in Real & Model Spaces

Yoshinori AKAISHI

Nuclear Physics

Finite number of nucleons interacting with strong interaction

Rich structures on the basis of the nuclear **Saturation**

Nuclear saturation

Infinite nuclear matter

Y. Akaishi, K. Takada & S. Takagi, Prog. Theor. Phys. <u>36</u> (1966) 1135

Infinite matter

Y. Akaishi & S. Nagata, Prog. Theor. Phys. <u>48</u> (1972) 133

Potential matrix elements

Tensor enhancement

Energy of nuclear matter

H.A. Bethe, Ann. Rev. Nucl. Sci. 21 (1971) 93

$$\langle \Phi \rangle \langle \Phi \rangle + \langle \Phi | V_{\tau} \frac{Q}{e} V_{\tau} | \Phi \rangle$$

Majorana exchange (1-m)+ mP_r , Saturation condition, m > 0.8, is not satisfied.

M. Serra, T. Otsuka et al., Prog. Theor. Phys. <u>113</u> (2005) 1009: *g*-matrix→Relativistic Mean Field

Tensor force effects on clusterization

Alpha particle

	Real		KE	$\hbar\omega = 21.6 \text{ MeV}$	/oV
		(MeV)	_	$\frac{1}{4} = \frac{3}{4} + \frac{1}{4} + \frac{1}$	
	H-J	RSC v8		Volkov]
Energy	-20.6	-21.9		-29.0	E
Kin. E	131.1	103.6	are 2~2.5 times larger than	48.6	KE
Pot. E	-151.7	-125.4		-77.6	PE
C [^{1E}	-51.3	-37.2		-38.8	1E centra
3E	-26.2	-0.6		-38.8	3E centra
_10+30	-0.4	0.5		0.0	
_	-69.7	-89.4	The largest contribution	0	
30	-0.5	-0.7		0	
LS+QLS	-3.6	1.9		0	
P(D) %	12.8	11.0	D-state correlation due to tensor force	0	1
	4		-		

M. Sakai, I. Shimodaya, Y. Akaishi, J, Hiura & H. Tanaka,

Prog. Theor. Phys. 56 (1974) 32.

ATMS

Real space vs. model space

Transformation $|\Psi\rangle = \hat{F} |\Phi\rangle$ $\hat{F} = 1 + \frac{Q}{e}V\hat{F}$ $e = E_0 - QTQ$ i) $P|\Psi\rangle = |\Phi\rangle$, ii) $\langle \Phi|\Psi\rangle = 1$

$$(E_{0} - QTQ)|\Psi\rangle = (E_{0} - QTQ)|\Phi\rangle + QV|\Psi\rangle$$

$$E_{0}|\Psi\rangle - TQ|\Psi\rangle = E_{0}|\Phi\rangle + QV|\Psi\rangle$$

$$E_{0}|\Psi\rangle - T(1-P)|\Psi\rangle = E_{0}|\Phi\rangle + (1-P)V|\Psi\rangle$$

$$E_{0}|\Psi\rangle - T|\Psi\rangle + T|\Phi\rangle = E_{0}|\Phi\rangle + V|\Psi\rangle - PV|\Psi\rangle$$

$$E_{0}|\Psi\rangle - H|\Psi\rangle = E_{0}|\Phi\rangle - T|\Phi\rangle - PV|\Psi\rangle$$

Now we define $V_{\rm M}$ so as to satisfy the relation; $PV_{\rm M}|\Phi\rangle = PV|\Psi\rangle$.

Then, $(E_0 - H)|\Psi\rangle = 0$

Reaction matrix

Multiple scattering process

Effective interaction

Multiple scattering process

1st ATMS

$$(\hat{F}_{ij} - 1) = \sum_{(kl)} \frac{Q}{e} g_{kl} + \sum_{(kl)} \frac{Q}{e} g_{kl} (\hat{F}_{kl} - 1)$$
$$(u_{kl} - 1) (\overline{u}_{kl} - 1)$$

2nd ATMS

$$(\hat{F}_{ij} - 1 - \sum_{(kl)}, \frac{Q}{e}g_{kl})$$

$$= \sum_{(kl)}, \frac{Q}{e}g_{kl}\sum_{(mn)}, \frac{Q}{e}g_{mn} + \sum_{(kl)}, \frac{Q}{e}g_{kl}(\hat{F}_{kl} - 1 - \sum_{(mn)}, \frac{Q}{e}g_{mn})$$

$$(\overline{u}_{kl} - 1) \quad (\overline{u}_{mn} - 1) \quad (\widetilde{u}_{kl} - 1)$$

ATMS can improve the wave function in a systematic way.

Few-Body Methods

K. Varga and Y. Suzuki, RIKEN-AF-NP-205 (1995)

N	$(L,S)J^{\pi}$	Method	E (MeV)	$\langle r^2 \rangle^{1/2}$ (fm)	-
3	$(0, 1/2)1/2^+$	Faddeev [1,2] ATMS [4]	-8.25273 -8.26	1.68	Gibson (1981) Akaishi (1981) Posati (1989)
		GFMC [9]	-8.240 -8.26 ± 0.01	1.682	Zabalitzky (1981)
		VMC [34] ^a	-8.2689 ± 0.03	1.68	Wiringa (1984)
	(0, 0)0+	SVM EV [33]	-8.2527	1.082	- Sugurer (1993)
•	(0,0)0	ATMS [4]	-31.36	1.40	Akaishi (1981)
		CRCG [6] GFMC [9]	-31.357 -31.3 ± 0.2	1.36	Kamimura (1990) Zaboliteku (1981)
		VMC [34] ^a	-31.3 ±0.05	1.39	Wiringa (1984)
•		SVM	-31.360	1.4087	Suzuki (1995)
(5)	$(1, 1/2)3/2^{-}$	VMC [34] ^a	-42.98 ± 0.16	1.51	
		SVM	-43.48	1.51	
(⁶ He)	(0,0)0+	/MC [34] ^a	-66.34 ± 0.29	1.50	
		SVM	-66.30	1.52	
(⁷ Li)	(1,1/2)3/2-	SVM	-83.4	1.68	

Malfliet-Tjon potential (Phys. Lett. 56B (1975) 217)

 $f_{1}^{2}/M = 41.47 \text{ MeV } \text{fm}^{2}$

 $V(r) = \{1458.05 \exp[-3.11 r) / r - 578.09 \exp[-1.55 r) / r\} \text{ in fm, MeV}$

ATMS

M. Sakai, I. Shimodaya,Y. Akaishi, J. Hiura & H. Tanaka, Prog. Theor. Phys. Suppl. <u>56</u> (1974) 32

Recipe for Effective Interaction

Y. Akaishi & K. Takada, Prog. Theor. Phys. 37 (1967) 847

1E central:

$$u_{LL'}^{JS}$$

$$g_{C}^{L=0}(r) = v_{0} u_{00}^{00} / j_{0}(kr) \rightarrow v_{C} \text{ at } r \ge r_{\text{healing}}$$
3E central:

$$g_{C}^{L=0}(r) = v_{C} u_{00}^{11} / j_{0}(kr) + \sqrt{8}v_{T} u_{02}^{11} / j_{0}(kr) \rightarrow v_{C}$$
3E tensor:

$$v_{T} \frac{Q}{e} v_{T} \text{ Tensor renormalization}$$

$$g_{T}^{LL'=02}(r) = v_{T} u_{00}^{11} / j_{0}(kr)$$

$$+ \frac{1}{\sqrt{8}} \{v_{C} - 2v_{T} - 3v_{LS} - 3v_{QLS}\} u_{02}^{11} / j_{0}(kr)$$

$$\rightarrow v_{T}$$

$$g_{T}^{LL'=22}(r) = \frac{7}{120} [-3\sqrt{8}v_{T} u_{20}^{11} / j_{2}(kr)$$

$$-3\{v_{C} - 2v_{T} - 3v_{LS} - 3v_{QLS}\} u_{22}^{11} / j_{2}(kr)$$

$$+5\{v_{C} + 2v_{T} - v_{LS} + 11v_{QLS}\} u_{22}^{21} / j_{2}(kr)$$

$$-2\{v_{C} - \frac{4}{7}v_{T} + 2v_{LS} + 2v_{QLS}\} u_{22}^{31} / j_{2}(kr)]$$

$$\rightarrow v_{T} + \frac{7}{2}v_{QLS}$$
3O spin-orbit:

9

$$g_{LS}^{L=1}(r) = \frac{1}{12} \left[-2 \left\{ v_{C} - 4v_{T} - 2v_{LS} - 2v_{QLS} \right\} u_{11}^{01} / j_{1}(kr) \right. \\ \left. -3 \left\{ v_{C} + 2v_{T} - v_{LS} + 3v_{QLS} \right\} u_{11}^{11} / j_{1}(kr) \right. \\ \left. +5 \left\{ v_{C} - \frac{2}{5}v_{T} + v_{LS} + v_{QLS} \right\} u_{11}^{21} / j_{1}(kr) \right. \\ \left. + 6 \sqrt{6}v_{T} u_{13}^{21} / j_{1}(kr) \right] \rightarrow v_{LS} \right]$$

³E spin-orbit

$$g_{LS}^{L=2}(r) = \frac{1}{60} \left[-9\sqrt{8}v_{T}u_{20}^{11} / j_{2}(kr) \right] -9\{v_{C} - 2v_{T} - 3v_{LS} - 3v_{LL}\}u_{22}^{11} / j_{2}(kr) \\-5\{v_{C} + 2v_{T} - v_{LS} + 11v_{LL}\}u_{22}^{21} / j_{2}(kr) \\+14\{v_{C} - \frac{4}{7}v_{T} + 2v_{LS} + 2v_{LL}\}u_{22}^{31} / j_{2}(kr) \\+24\sqrt{3}v_{T}u_{24}^{31} / j_{2}(kr)] \rightarrow v_{LS}$$

Theory of Effective Interaction

T.T.S. Kuo & G.E. Brown, Nucl. Phys. <u>85</u> (1966) 40

K. Ando, H. Bando, S. Nagata et al., Prog. Theor. Phys. Suppl. No.65 (1979)

Since then, 20 years have passed.

Y. En'yo: What is "Tensor Force"?

Realistic NN interaction

$$V = V_{\rm C}(r) + V_{\rm T}(r)S_{12} + V_{\rm LS}(r)\vec{L}\vec{S} + V_{\rm W}W_{12} + V_{\rm LL}\vec{L}^2$$
$$S_{12} = 3\frac{(\vec{\sigma}_1\vec{r})(\vec{\sigma}_2\vec{r})}{r^2} - \vec{\sigma}_1\vec{\sigma}_2$$
$$S_{12} \begin{pmatrix} Y_{J-1,1,J} \\ Y_{J,1,J} \\ Y_{J+1,1,J} \end{pmatrix} = \frac{1}{2J+1} \begin{bmatrix} -2(J-1) & 0 & 6\sqrt{J(J+1)} \\ 0 & 2(2J+1) & 0 \\ 6\sqrt{J(J+1)} & 0 & -2(J+2) \end{bmatrix} \begin{pmatrix} Y_{J-1,1,J} \\ Y_{J,1,J} \\ Y_{J+1,1,J} \end{pmatrix}$$

An evidence for OPEP

³ P ₀	$V_{\sigma} - 4V_{T}$	$-2V_{LS}$
³ P ₁	$V_{\sigma} + 2V_{T}$	$-V_{LS}$
³ P ₂	$V_{c} - (2/5) V_{\underline{r}} + (6\sqrt{2})$	$(\overline{6}/5)V_{T}^{*}+V_{LS}$

$$(\vec{\tau}_1 \vec{\tau}_2) V_T S_{12}, \quad (\vec{\tau}_1 \vec{\tau}_2) = -3 \text{ for } {}^3 \text{E} \\ 1 \text{ for } {}^3 \text{O}$$

The AV8' Potential

R.B. Wiringa, V.G.J. Stoks & R. Schiavilla, Phys. Rev. C51 (1995) 38.

$$V = v^{\pi} + v_{ST}^{\mathsf{R}}$$

OPEP

$$v^{\pi} = f^{2} \left(\frac{m}{m_{c}}\right)^{2} \frac{1}{3} mc^{2} (\vec{\tau}_{1} \vec{\tau}_{2}) \{ (\vec{\sigma}_{1} \vec{\sigma}_{2}) Y_{m}(r) + T_{m}(r) S_{12} \}$$

$$Y_{m}(r) = \frac{e^{-mr}}{mr} \left(1 - e^{-cr^{2}}\right)$$

$$T_{m}(r) = \left\{1 + \frac{3}{mr} + \frac{3}{(mr)^{2}}\right\} \frac{e^{-mr}}{mr} \left(1 - e^{-cr^{2}}\right)^{2}$$

$$f^{2} = 0.075, \quad m = \frac{1}{3} (m_{0} + 2m_{c}), \quad c = 2.1 \text{ fm}^{-2}$$

$$v_{ST}^{\mathsf{R}} = v_{ST}^{\mathsf{C}} + v_{ST}^{\mathsf{T}} S_{12} + v_{ST}^{\mathsf{LS}} \vec{L} \vec{S}$$

Alpha particle

4		
(MeV)	AV8'	
Energy	-25.9	
Kin. E	102.4	
Pot. E	-128.3	
C 1E 3E	-55.3	
	-68.4	
LS	-4.7	
<i>P</i> (D) %	13.9	

Phys. Rev. C<u>64</u> (2001) 044001 Benchmark test calculation of 4N FY H. Kamada, W. Gloeckle et al. CRCGV M. Kamimura, E. Hiyama et al. SVM Y. Suzuki, K. Varga et al. HH M. Viviani, A. Kievsky et al. GFMC J. Carlson, R.B. Wiringa et al. NCSM

P. Navratil, B.R. Barrett et al.

Ordinary single particle model

"Is the effective model unique?"

Tensor BHF Calculation of 4He

A challenge @ the citadel of standard S. M.

$$\Phi_{\text{Intr}} = \prod_{k=1}^{4} F(\vec{r}_k; \vec{\sigma}_k, \vec{\tau}_k) \chi_{\text{spin-isospin}}$$
$$F(\vec{r}_k; \vec{\sigma}_k, \vec{\tau}_k) = \left\{ f_s(r_k) - i \underline{(\vec{\sigma}_k \vec{r}_k)} f_p(r_k) \underline{\hat{g}}(\vec{\tau}_k) \right\}$$

Parity
$$(\vec{\sigma} \ \vec{r}) \alpha Y_{00} = -r \left| \left(\ell = 1, s = \frac{1}{2} \right) j = j_z = \frac{1}{2} \right\rangle$$

Charge
$$\begin{aligned}
\hat{g}(\vec{\tau}) \rho &= \frac{1}{2} (1-i) \rho - \sqrt{\frac{1}{2}} n \\
\hat{g}(\vec{\tau}) n &= \frac{1}{2} (1+i) n + \sqrt{\frac{1}{2}} \rho \\
\pi^+, \pi^0, \pi^- \text{ coherence}
\end{aligned}$$
Projection: $\Psi = P^\tau P^\pi \Phi_{\text{intr}}$

lkeda's idea

Tensor ⇒ pion Parity- & charge-mixed s.p. state

Alpha particle

Wave function of ⁴He

$$\begin{split} \Psi &= \Psi_{\rm S} + \Psi_{\rm D} \\ \Psi_{\rm S} &= f^{\rm S} \{0,0\}^{\rm A} + \left(f_{m1}^{\rm M} \{0,0\}_{m2}^{\rm M} - f_{m2}^{\rm M} \{0,0\}_{m1}^{\rm M} \right) \\ \mathbf{Principal S} \qquad \mathbf{Mixed S'} \\ \Psi_{\rm D} &= \sum_{M_L} (22M_L M_S | 00) \left(g_{m1,M_L}^{\rm M} \{0,2\}_{m2,M_S}^{\rm M} - g_{m2,M_L}^{\rm M} \{0,2\}_{m1,M_S}^{\rm M} \right) \\ \mathbf{Mixed D} \\ \mathbf{g}_{m,M_L}^{\rm M} &= \sqrt{\frac{10}{3}} \sum_{(ij)} c_m^{ij} w_{ij}^{\rm TE} \left[\vec{r}_{ij} \otimes \vec{r}_{ij} \right]_{M_L}^{(2)} \Phi^{\rm S} \end{split}$$

 $\begin{array}{ll} \underline{Spin \ functions} & S \to \ partition & \left[\frac{N}{2} + S, \frac{N}{2} - S\right] \\ \Sigma^2 = \left[[s(1)s(2)]^1 [s(3)s(4)]^1 \right]^2, & S = 2 & [4] \\ \Sigma^0_{m1} = \left[[s(1)s(2)]^1 [s(3)s(4)]^1 \right]^0, & S = 0 \\ \Sigma^0_{m2} = \left[[s(1)s(2)]^0 [s(3)s(4)]^0 \right]^0, & S = 0 \end{array}$ $\begin{array}{ll} \underline{[22]} \\ \underline{[22]} \\$

Momentum Distribution of N in 4He

"Density correlation"
$$W(\vec{p}) = (2\pi)^{-3} \int d\vec{r} d\vec{r}' \exp(i\vec{p}(\vec{r} - \vec{r}')) \rho(\vec{r}, \vec{r}')$$

$$\rho(\vec{r},\vec{r}') = \left(\frac{4}{3}\right)^3 \int d\vec{\xi}_1 d\vec{\xi}_2 \Psi^* \left(\vec{\xi}_1,\vec{\xi}_2,\frac{4}{3}\vec{r}\right) \Psi \left(\vec{\xi}_1,\vec{\xi}_2,\frac{4}{3}\vec{r}'\right)$$

	89 %	11%
$W(\vec{p}) = C \Big\{ \exp (i \theta - \theta) \Big\}$	$\left(-B\vec{p}^{2}\right)+s$	$s \exp\left(-B\vec{p}^2/t\right)$
$B = 1.79 \text{fm}^2$	t = 12,	<i>s</i> = 0.00286.
$\mathbf{K} \cdot \mathbf{E} = (\mathbf{A} - 1)$) <u>A−1</u> ∫dp̄	$W(\vec{p}) \frac{\hbar^2}{2M} \vec{p}^2$

Alpha particle

Concluding remarks

Models of new generation

Antisymmetrized Molecular Dynamics

Y. Kanada-En'yo, H. Horiuchi et al.

must include physical essences of strong interaction.

"Pion dominance"

Thank you very much!