RIKEN Lecture January 6, 2006

Deeply Bound K Nuclei

Yoshinori AKAISHI and Toshimitsu YAMAZAKI

Production of hypernuclei

K⁻	ūs	493.65 MeV / <i>c</i> ²	1.24×10 ^{−8} sec
Κ٥	ds	497.67 MeV / <i>c</i> ²	$(K^{0} \cap ROE 10 K^{0} E 18E R coc)$
K ⁰	ds	497.67 MeV / <i>c</i> ²	$(N_{S}^{*} 0.09 \pm 10, N_{L}^{*} 0.10 \pm 0.09 \pm 0.00)$
Κ+	นร	493.65 MeV / c^2	1.24×10^{-8} sec

Λ uds T = 0 1115.63 MeV / c^2 2.63×10⁻¹⁰ sec

Few-body KN systems

KN interaction

A chiral constituent-quark model

L.Ya. Glozman, W. Plessas, K. Varga & R.F. Wagenbrunn, Phys. Rev. D <u>58</u> (1998) 094030.

Jülich KN Quasi-potential

A. Müller-Groeling, K. Holinde & J. Speth, Nucl. Phys. A513 (1990) 557.

Y. Akaishi & T. Yamazaki, Phys. Rev. C 65 (2002) 044005

Nuclear $\frac{4}{K}$ H bound state [K⁻ \otimes ⁴He]_{7=1/2}

M. Iwasaki T. Suzuki H. Bhang G. Franklin K. Gomikawa **R.S.** Hayano T. Hayashi K. Ishikawa S. Ishimoto K. Itahashi T. Katayama Y. Kondo Y. Matsuda T. Nakamura S. Okada H. Outa **B.** Quinn M. Sato M. Shindo H. So T. Sugimoto P. Strasser K. Suzuki S. Suzuki **D.** Tomono A.M. Vinodkumar E. Widmann T. Yamazaki T. Yoneyama

Atomic systems by point-Coulomb interaction

Klein-Gordon equation

$$(\boldsymbol{E} - \boldsymbol{V}_{C} - \boldsymbol{U}_{v})^{2} = \boldsymbol{\vec{p}}^{2}\boldsymbol{c}^{2} + (\boldsymbol{m}^{2}\boldsymbol{c}^{4} + 2\boldsymbol{m}\boldsymbol{c}^{2}\boldsymbol{U}_{S})$$

$$\boldsymbol{\vec{E}} = \varepsilon + \boldsymbol{m}\boldsymbol{c}^{2}$$

$$\left\{\varepsilon + \frac{\varepsilon^{2}}{2\boldsymbol{m}\boldsymbol{c}^{2}}\right\} = \frac{\boldsymbol{\vec{p}}^{2}}{2\boldsymbol{m}} + \left\{\left(1 + \frac{\varepsilon}{\boldsymbol{m}\boldsymbol{c}^{2}}\right)\boldsymbol{V}_{C} - \frac{\boldsymbol{V}_{C}^{2}}{2\boldsymbol{m}\boldsymbol{c}^{2}}\right\} + \left\{\boldsymbol{U}_{s} + \left(1 + \frac{\varepsilon}{\boldsymbol{m}\boldsymbol{c}^{2}}\right)\boldsymbol{U}_{v} - \frac{\boldsymbol{U}_{v}^{2}}{2\boldsymbol{m}\boldsymbol{c}^{2}}\right\}$$

$$\equiv \boldsymbol{U}_{opt}$$

$$\textbf{Atomic state}$$

$$\textbf{Deeply bound state}$$

A. Dote et al., Phys. Rev. C<u>70</u> (2004) 044313

	<i>T</i> =2
	<i>T</i> =1
	<i>T</i> =1
<u></u>	
	<i>T</i> =0
	<i>T</i> =0
<u> </u>	<i>T</i> =1
N(0s)³K	N(0s)²(0p)

X. ????

Phase transition of ppK⁻

Observation of ppK⁻

M. Agnello, H. Fujioka et al., Phys. Rev. Lett. 94 (2005) 212303

FINUDA@DAΦNE

$$B = 115^{+6+3}_{-5-4}$$
 MeV
 $\Gamma = 67^{+14+2}_{-11-3}$ MeV

15% enhanced KN interaction $B = 48 \text{ MeV} \rightarrow 86 \text{ MeV}$

Invariant masses of pnK⁻ decay

P. Kienle, Y. Akaishi & T. Yamazaki

Energy of three-body kaonic nuclei

Khin Swe Myint

<u>Λ(1405)-doorway process</u>

T. Yamazaki & Y. Akaishi, Phys. Lett. B<u>535</u> (2002) 70.

Missing mass spectroscopy

Spectra from (π^+ **, K**⁺**) reaction**

Heavy-ion reaction ~10A GeV

High-density environment provided by HI fireball

Invariant mass spectroscopy

N. Herrmann , T. Yamazaki

<u>Remarks</u>

Nuclear K bound state

Mini strange matter \overline{K} plays a role of "contractor".

A new means to investigate hadron dynamics in dense&cold matter

> Chiral restoration? Color superconductivity? Kaon condensation? Strange hadronic/quark matter?

Production-/Decaychannel spectroscopies

Missing-mass/Invariant-mass Ψ/J

Few-body K nuclear systems would provide experimental data of fundamental importance for hadron physics with strangeness. KEK DAΦNE SPring-8 GSI J-Lab J-PARC

Antisymmetrized Molecular Dynamics **Calculation** A. Dote, H. Horiuchi, Y. Akaishi & T. Yamazaki, Phys. Lett. B<u>590</u> (2004) 51.

Nuclear phase diagram

T. Hatsuda & T. Kunihiro, Phys. Rev. Lett. <u>55</u> (1985) 158

原子核は豊かである。

Thank you very much!