Active mechanics of cells

Tetsuya Hiraiwa
The University of Tokyo
Active mechanics of cells

Tetsuya Hiraiwa
The University of Tokyo

100μm

(HeLa cells)
Table of contents

Multicellular scale (>>10μm)

My research subjects

Epithelial tissue dynamics

Cellular scale (~ several 10μm)

Chemotactic migration of eukaryotic cells

Subcellular scale (< 10μm)

Contractility in actin-myosin cytoskeleton

[Bray et al. Science ‘88.]

[Salbreux et al., TCB ‘13]
Cytoskeleton, controlling cell shape

\[\text{Persistence length} \approx 17\mu m \]

[Image from: http://csls-db.c.u-tokyo.ac.jp/search/detail?image_repository_id=341]

\[G. \text{ Charras et al., J. Cell Biol. '06}\]

\[G. \text{ Salbreux et al., Trends in Cell Biol. 22, 536 (2013).}\]

Contractility in actomyosin network
Mechanics of cortical cytoskeleton

Myosin (Motor) + F-actin → Motor-induced force → Contractile

[Bray et al. Science ‘88.]

“How act.-myo. cytosk. gets contractile??”

J.Sedzinski, M.Biro et al., Nature 476, 462 (2011).]
Theoretical model

Myosin heads try to move twd. determined dirs. alg. F-act.,
\[
\left(\mu ds_i / dt = -dU / ds_i \right.
\text{with the potential } U = -f_0 \sum_i s_i \right)
\]
Numerical results

Without passive crosslinkers

→ Extensile (Diffusive)

With passive crosslinkers

→ Contractile

[TH and G. Salbreux, PRL 116, 188101 (2016).]

Details will be discussed on the poster
Table of contents

Multi-cellular scale (>>10μm)

My research subjects

Epithelial tissue dynamics

Cellular scale (~ several 10μm)

Chemotactic migration of eukaryotic cells

Subcellular scale (< 10μm)

Contractility in actin-myosin cytoskeleton

[Bray et al. Science ‘88.]

[Salbreux et al., TCB ‘13]
Chemotactic migration of a eukaryotic cell

Chemotaxis of *Dictyostelium discoideum* (aca-)

[C. McCann et al., J. Cell Science, 2010.]

Every 30 seconds for 90 minutes.

Using phase-contrast microscopy with a 5 × objective.

“*Theor. model describing chemotaxis trajectory*?”
EoM of a cell as a self-driven object

\[
\frac{d}{dt} q = I_q (1 - q^2) q + \overline{fg.s.} + \xi
\]

Deterministic bias due to chem. grad. (Mechanical process)

\[
\mu \frac{d}{dt} x = \chi q
\]

Force balance btw. friction and momentum generation alg. polarity (q) (Biol. pr.)

Polarity dynamics

\[
v = \frac{dx}{dt}
\]

\[v_s: \text{constant speed } (= \frac{\nu}{\mu})\]

Responsiveness \(f_q\)

\[v = \frac{dx}{dt}\]

\[k_{on}, k_{off}\]

\[\nu_s: \text{constant speed } (= \frac{\nu}{\mu})\]

\[\nu\]

\[I_q\]

\[\chi\]

\[\xi\]

\[\text{White Gaussian noise}\]

\[\text{Distribution } P_s(\theta_v)\]

\[\text{Gradient direction when polarity } q \text{ is spontaneously formed}\]

\[\text{w/o spontaneous formation of polarity}\]

\[\text{using realistic Dicty. Parameters}\]

[TH et al., Physical Biology 11, 056002 (2014).]

Chemotactic migration

(Experiment)

[Fuller et al, 2009]

(\(fg.s. = (0, S)\) with chemotact. bias \(S = 0.1\), Dispers. \(D\) of noise \(\xi = 0.5\))

\[l_q = 100\]

\[P_s(\theta_v)\]

\[\text{Distribution } P_s(\theta_v)\]

\[\text{migration direction } \theta_v/\pi\]

7/11/2016

10/18
Toward many cell system

\[
\mu \frac{d}{dt} x_i = \chi q_i + K_i(\{x_j\})
\]

\[
\frac{d}{dt} q_i = I_q(1 - q_i^2)q_i + J_i(\{x_j\}, \{q_j\}) + f^g.s. + \xi_i
\]

Cell-cell avoidance

Alignment

Xenopus Neural Crest cells

Chemotactic migration
Table of contents

Multi-cellular scale (>>10μm)

Cellular scale (~ several 10μm)

Subcellular scale (< 10μm)

My research subjects

- Epithelial tissue dynamics
 - Chemotactic migration of eukaryotic cells

- Contractility in actin-myosin cytoskeleton

- [Bray et al. Science ‘88.]
- [Salbreux et al., TCB ‘13]
Multicellular organism are covered by epithelial tissue

Drosophila embryogenesis

Adhesion molecules (E-cadherin-GFP)

Basal membrane

Lateral view

Adherence junction and Actomyosin bundle

Top view

[Y. Wang et al., Dev. Cell 25, 299 (2013).]
Epithelial tissue dynamics

"How can this long-term motion be realized?"

[E. Kuranaga et al., Curr. Biol '10.]

[M. Suzanne et al., Development 138, 1493 (2011).]
Model — Cellular vertex model

\[\mathbf{r}_i \approx 10\mu m \]

- Variational dynamics:

\[\mu \frac{d}{dt} \mathbf{r}_i = - \frac{\partial E(\mathbf{r}_i)}{\partial \mathbf{r}_i} \]

\[E(\{\mathbf{r}_\alpha\}) = \frac{K}{2} \sum_{\alpha:\text{cells}} (A_\alpha - A^{(0)})^2 + \frac{K^p}{2} \sum_{\alpha:\text{cells}} (L_\alpha - L^{(0)})^2 + \sum_{<i,j>:\text{bonds}} \Lambda_{ij} l_{ij} \]

 \hline
 \text{Cell area (}A_\alpha\text{) control} \hline
 \text{Cell perimeter (}L_\alpha\text{) control} \hline
 \text{Bond-specific tension (}l_{ij}: \text{length of the bond }<i,j>\text{)} \hline

- Junctional remodeling

\[[\text{T. Nagai and H. Honda, Phil. Mag. 81, 699 (2001).}] \]
Introducing chirality in tension

Bond specificity in tension $\lambda_{ij}(t)$
(chirality in tension strength)

$$\lambda_{ij}(t) = \gamma_1(t) \times \cos^2 (\theta_{ij} - \theta_0)$$

with $\theta_0 = 45^\circ$ and $\gamma_1(t) = \gamma_1(0) \left[\frac{1 + \cos(2\pi f_{ij}t)}{2} \right]$

Model: Implementation

\[\mu \frac{d}{dt} \vec{r}_j = - \left. \frac{\partial E(\{\vec{r}_\alpha\}, \{\Lambda_{ij}\})}{\partial \vec{r}_i} \right|_{\Lambda_{ij} = \lambda_{ij}(t)} \]

with \(\lambda_{ij}(t) = \gamma_1(t) \times \cos^2(\theta_{ij} - \theta_0) \)

The direction in which tension is maximally strengthened

“Mechano-active” coupling

Mechanical process:
\[\mu \frac{d}{dt} \vec{r}_j = - \left. \frac{\partial E(\{\vec{r}_\alpha\}, \{\Lambda_{ij}\})}{\partial \vec{r}_i} \right|_{\Lambda_{ij} = \lambda_{ij}(t)} \]

Active process:
\[\left(\tau \frac{d\Lambda_{ij}}{dt} = \right) 0 = -(\Lambda_{ij} - \lambda_{ij}(t)) \]
Numerical results

Comp. with *in vivo* data
(ex) bond angle distribution around AP axis

In vivo

Before rotation

Sim.

During rotation

Describing living cells’ dynamics

Mechanics on active, dynamic motions of living cells

(Cl.) Mechanical eq. of motion + Finding the minimal “biological” assumption
Acknowledgements

On motor-induced contractile stress in an isotropic network

Dr. Guillaume Salbreux
Dr. Fabio Staniscia
Dr. Matthew Smith

On theoretical modeling of chemotactic migration

On a mechanism of epithelial migration

Dr. Katsuhiko Sato, Dr. Tatsuo Shibata
Dr. Erina Kuranaga, Dr. Emi Maekawa, Ayako Isomura

Thank you for your attention.