Out-of-equilibrium field theories coupled to strong external sources

Kyoto University, December 2013

François Gelis IPLT, Saclay

Outline

- Preamble : classical statistical method in Quantum Mechanics
- QFT with strong sources, Inclusive observables at LO and NLO
- 3 Instabilities and resummation
- 4 Example : Schwinger mechanism

Quantum Mechanics

Classical phase-space formulation of Quantum Mechanics

Consider the von Neumann equation for the density operator :

$$\frac{\partial \widehat{\rho}_{\tau}}{\partial \tau} = i \frac{\hbar}{[\widehat{H}, \widehat{\rho}_{\tau}]} \qquad (**)$$

Introduce the Wigner transforms :

$$\begin{array}{lcl} {\cal W}_{\tau}(x,p) & \equiv & \int ds \; e^{i\,\mathbf{p}\cdot\mathbf{s}} \; \left\langle x+\frac{s}{2} \big| \widehat{\rho}_{\tau} \big| x-\frac{s}{2} \right\rangle \\ & {\cal H}(x,p) & \equiv & \int ds \; e^{i\,\mathbf{p}\cdot\mathbf{s}} \; \left\langle x+\frac{s}{2} \big| \widehat{H} \big| x-\frac{s}{2} \right\rangle \; \; \mbox{(classical Hamiltonian)} \end{array}$$

(**) is equivalent to:

$$\begin{array}{lcl} \frac{\partial W_{\tau}}{\partial \tau} & = & \mathfrak{H}(x,p) \; \frac{2}{\mathfrak{i} \, \hbar} \; \sin \left(\frac{\mathfrak{i} \, \hbar}{2} \left(\stackrel{\leftarrow}{\partial}_{\, p} \stackrel{\rightarrow}{\partial}_{\, x} - \stackrel{\leftarrow}{\partial}_{\, x} \stackrel{\rightarrow}{\partial}_{\, p} \right) \right) \; W_{\tau}(x,p) \\ & = & \underbrace{\left\{ \mathfrak{H}, W_{\tau} \right\}}_{\text{Poisson bracket}} \; + \mathcal{O}(\hbar^2) \end{array}$$

Classical statistical method in Quantum Mechanics

- Quantum effects in the time evolution are O(ħ²) corrections (i.e. they appear at NNLO and beyond)
- ①(ħ) (NLO) contributions can only come from the initial state
 Uncertainty principle : Δx · Δp ≥ ħ
 The initial Wigner distribution W_{τ=0}(x, p) must have a support of area at least ħ (minimal area realized by coherent states)
- All the O(ħ) effects can be accounted for by a Gaussian initial distribution W_{τ=0}(x, p)

Classical statistical method

- Sample by a Monte-Carlo the Gaussian distribution that approximates the initial distribution $W_{\tau=0}(\mathbf{x},\mathbf{p})$
- For each initial (x, p), solve the classical equation of motion up to the time of interest

• For non-harmonic oscillators, the oscillation frequency depends on the initial condition

- For non-harmonic oscillators, the oscillation frequency depends on the initial condition
- \bullet Because of QM, the initial ensemble is a set of width $\gtrsim \! \hbar$

- For non-harmonic oscillators, the oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\gtrsim \! \hbar$
- This ensemble of initial configurations spreads in time

- For non-harmonic oscillators, the oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\gtrsim \hbar$
- This ensemble of initial configurations spreads in time

- For non-harmonic oscillators, the oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\gtrsim \hbar$
- This ensemble of initial configurations spreads in time
- At large times, the ensemble fills densely all the region allowed by energy conservation ⇒ microcanonical equilibrium

Quantum Field Theory

w/ Strong Sources

Typical situation

$$\frac{1}{2}(\vartheta_{\mu}\varphi)(\vartheta^{\mu}\varphi)-V(\varphi)+J\varphi$$

- In general, the source J is space and time dependent
- The system starts at $t = -\infty$ from a known initial state (example: vacuum state)
- The source may be turned off at some point, and the system evolves by itself afterwards

Strong source : J ~ inverse coupling

- Non-perturbative
 - ⇒ can we expand in powers of the coupling?
- Spectrum of produced particles?
- After the sources are switched off: how does the system equilibrate?

Example I: Schwinger mechanism

- Consider a constant and uniform electrical field \vec{E}_{ext}
- Perturbatively, energy conservation prevents the production of e^+e^- pairs
- Pairs can be produced via a vacuum instability
- Rate : $\exp(-\pi m^2/eE)$ (non analytic in the coupling *e*)
- In Quantum Field Theory, can be obtained at one loop (but one must use the propagator dressed by the external field)

Example II: Nucleus-Nucleus collisions at high energy

$$\mathcal{L} = -\frac{1}{4} \; F_{\mu\nu} F^{\mu\nu} + (\underbrace{J_1^\mu + J_2^\mu}_{J^\mu}) A_\mu \label{eq:lambda}$$

- Given the sources J_{1,2} in each projectile, how do we calculate observables? Is there some kind of perturbative expansion?
- Loop corrections, factorization?
- Thermalization?

Strong source regime

7/39

· Weak sources : perturbative treatment

Strong source regime

7/39

- · Weak sources : perturbative treatment
- Strong sources: non-perturbative (when J ~ 1/g)

Power counting

Power counting

Order of connected subdiagram when $J \sim g^{-1}$:

$$\frac{1}{g^2}$$
 g[#] produced gluons $g^{2(\# loops)}$

Power counting

Example : single particle spectrum :

$$\frac{dN_1}{d^3\vec{p}} = \frac{1}{g^2} \left[c_0 + c_1 g^2 + c_2 g^4 + \cdots \right]$$

 The coefficients c₀, c₁, · · · are themselves series that resum all orders in (gJ)ⁿ. For instance,

$$c_0 = \sum_{n=0}^{\infty} c_{0,n} \left(\mathbf{gJ} \right)^n$$

 We want to calculate at least the entire c₀/g² contribution, and a subset of the higher order terms

Inclusive observables

 Inclusive observables do not veto any final state Example: moments of the transition probabilities:

$$\frac{dN_1}{d^3 \vec{\boldsymbol{p}}} \sim \sum_{n=0}^{\infty} (n+1) \int \frac{1}{(n+1)!} \bigg[\underbrace{d\Phi_1 \cdots d\Phi_n}_{\text{n part. phase-space}}\bigg] \ \left| \left\langle \boldsymbol{p} \boldsymbol{p}_1 \cdots \boldsymbol{p}_{n \, \text{out}} \middle| \boldsymbol{0}_{\text{in}} \right\rangle \right|^2$$

(single inclusive particle distribution)

Equivalent definition:

$$\frac{dN_1}{d^3\vec{\boldsymbol{p}}} \sim \left\langle \mathbf{0}_{in} \middle| \mathbf{\alpha}_{out}^\dagger(\boldsymbol{p}) \mathbf{\alpha}_{out}(\boldsymbol{p}) \middle| \mathbf{0}_{in} \right\rangle$$

(completeness of the out-states)

- Start with transition amplitudes : sources \rightarrow particles

- Start with transition amplitudes : sources \rightarrow particles
- Consider squared amplitudes (including interferences)

- Start with transition amplitudes : sources \rightarrow particles
- Consider squared amplitudes (including interferences)
- See them as cuts through vacuum diagrams Cut propagator $\sim \delta(p^2)$

- Start with transition amplitudes : sources → particles
- Consider squared amplitudes (including interferences)
- See them as cuts through vacuum diagrams Cut propagator $\sim \delta(p^2)$

Weight each cut by $z(p) \rightarrow generating functional$

$$F[\textbf{z}] \equiv \sum_{n} \frac{1}{n!} \int \left[d\Phi_1 \cdots d\Phi_n \right] \frac{\textbf{z}(\textbf{p}_1) \cdots \textbf{z}(\textbf{p}_n)}{\left| \left\langle \textbf{p}_1 \cdots \textbf{p}_{n \, out} \middle| \textbf{0}_{in} \right\rangle \right|^2}$$

Generating functional

Observables are given by derivatives of F[z], e.g.

$$\frac{\mathrm{dN}_1}{\mathrm{d}^3\vec{\mathbf{p}}} = \left. \frac{\delta F[z]}{\delta z(\mathbf{p})} \right|_{z=1}$$

(inclusive observables are derivatives at the point z = 1)

unitarity implies F[1] = 1

Exact formula for the first derivative :

$$\frac{\delta \log F[z]}{\delta z(\textbf{p})} = \int d^4x d^4y \ e^{i\textbf{p}\cdot(\textbf{x}-\textbf{y})} \ \Box_\textbf{x} \Box_\textbf{y} \Big[\textbf{A}_+(\textbf{x}) \textbf{A}_-(\textbf{y}) + \textbf{G}_{+-}(\textbf{x},\textbf{y}) \Big]$$

where A_{\pm} and g_{+-} are connected 1- and 2-point functions in the Schwinger-Keldysh formalism, with cut propagators weighted by z(p)

Schwinger-Keldysh formalism

- Set of Feynman rules to compute directly transition probabilities (i.e. $\mathcal{A}\mathcal{A}^*$)
- This can be achieved as follows:
 - ullet A vertex is -ig on one side of the cut, and +ig on the other side
 - There are four propagators, depending on the location w.r.t. the cut of the vertices they connect:

$$\begin{array}{ll} G_{++}^0(p)=i/(p^2-m^2+i\varepsilon) & (\text{standard Feynman propagator}) \\ G_{--}^0(p)=-i/(p^2-m^2-i\varepsilon) & (\text{complex conjugate of } G_{++}^0(p)) \\ G_{+-}^0(p)=2\pi\,\text{z}(\textbf{p})\,\theta(-p^0)\delta(p^2-m^2) \end{array}$$

At each vertex of a given diagram, sum over the types + and (2ⁿ terms for a diagram with n vertices)

Inclusive Observables at Leading Order

Single inclusive spectrum

The single inclusive spectrum is given by :

$$\frac{dN_1}{d^3p} = \left. \frac{\delta F[z]}{\delta(p)} \right|_{z=1} = \int d^4x d^4y \,\, e^{\mathfrak{i} p \cdot (x-y)} \,\, \Box_x \Box_y \Big[\textcolor{red}{A_+(x)A_-(y)} + \textcolor{red}{G_{+-}(x,y)} \Big]_{z=1}$$

Two types of terms :

Leading Order

- LO ≡ tree diagrams
 - > the second terms can be ignored
- In each blob, we must sum over all the tree diagrams, and over all the possible cuts:

$$\frac{dN_1}{d^3p}\bigg|_{LO} = \sum_{\text{trees}} \sum_{\text{cuts}} \iff \text{tree}$$

• Note : at this point, we set $z(\mathbf{p}) = 1$

Expression in terms of classical fields

 When summing over the cuts in a tree diagram, we only get the following combinations of propagators:

$$G_{++}^{0}(p) - G_{+-}^{0}(p)$$

$$G_{-+}^{0}(p) - G_{--}^{0}(p)$$

Retarded propagator

$$G_{++}^0(p) - G_{+-}^0(p) = G_{-+}^0(p) - G_{--}^0(p) = \frac{G_R^0(p)}{G_R^0(p)} \quad \text{(retarded propagator)}$$

• For any tree diagram contributing to the 1-point functions A_{\pm} , the sum over the \pm indices at the vertices simply transforms all the propagators into retarded propagators

Sum of trees with retarded propagators :

$$\square \mathcal{A} + U'(\mathcal{A}) = \mathfrak{j} \qquad , \quad \lim_{x_0 \to -\infty} \mathcal{A}(x) = 0$$

Expansion in powers of J (for cubic interactions) :

Built with retarded propagators

Sum of trees with retarded propagators :

$$\square \mathcal{A} + U'(\mathcal{A}) = j \qquad , \quad \lim_{x_0 \to -\infty} \mathcal{A}(x) = 0$$

Expansion in powers of J (for cubic interactions) :

$$+\frac{1}{2}$$

Built with retarded propagators

Sum of trees with retarded propagators:

$$\square \mathcal{A} + U'(\mathcal{A}) = j \qquad , \quad \lim_{x_0 \to -\infty} \mathcal{A}(x) = 0$$

Expansion in powers of J (for cubic interactions) :

$$+\frac{1}{2} + \frac{1}{2}$$

Built with retarded propagators

Sum of trees with retarded propagators :

$$\square \mathcal{A} + U'(\mathcal{A}) = j \qquad , \quad \lim_{x_0 \to -\infty} \mathcal{A}(x) = 0$$

Expansion in powers of J (for cubic interactions) :

- · Built with retarded propagators
- · Classical solutions resum the full series of tree diagrams

Inclusive particle spectrum at LO

The particle spectrum at LO is given by :

$$\left.\frac{dN_1}{d^3\vec{\boldsymbol{p}}}\right|_{LO} = \frac{1}{16\pi^3}\int_{x,y}\;e^{i\mathbf{p}\cdot(x-y)}\;\Box_x\Box_y\;\boldsymbol{\mathcal{A}}(x)\boldsymbol{\mathcal{A}}(y)$$

where $\mathcal{A}(x)$ is the classical solution such that $\lim_{x^0\to -\infty}\mathcal{A}(x)=0$

Inclusive particle spectrum at LO

The particle spectrum at LO is given by :

$$\left.\frac{dN_1}{d^3\vec{p}}\right|_{LO} = \frac{1}{16\pi^3} \int_{x,y} \, e^{ip\cdot(x-y)} \, \Box_x \Box_y \, \mathcal{A}(x) \mathcal{A}(y)$$

where $\mathcal{A}(x)$ is the classical solution such that $\lim_{x^0\to -\infty}\mathcal{A}(x)=0$

• NOTE : if the source J is time independent, no particles can be produced at LO (because $\mathcal{A}(x)$ has no time-like Fourier modes)

Leading Order

Next-to-

Why the LO may be insufficient?

Naive perturbative expansion :

$$\frac{dN}{d^{3}\vec{p}} = \frac{1}{g^{2}} \left[c_{0} + c_{1} g^{2} + c_{2} g^{4} + \cdots \right]$$

Note : so far, we have seen how to compute c_0

- The source is time dependent, and particle production is impossible at LO
- The description of the projectiles as external sources is valid for modes with large longitudinal momenta $k^{\pm} > \Lambda$. Loop corrections produce logs of this unphysical cutoff. The logs must be computed and resummed
- In QCD and other theories, there are instabilities that cause the coefficients c_n to grow indefinitely with time. These secular terms must be resummed

Cauchy problem for classical fields

Green's formula for classical solutions

$$\frac{\mathcal{A}(x)}{\mathcal{A}(x)} = i \int\limits_{y \in \Omega} G_{\text{R}}^{0}\left(x,y\right) \left[J(y) - V'(\underline{\mathcal{A}(y)})\right] + i \int\limits_{y \in \Sigma} G_{\text{R}}^{0}\left(x,y\right) \left(n \cdot \stackrel{\leftrightarrow}{\vartheta}_{y}\right) \underline{\mathcal{A}}_{\text{init}}(y)$$

Small perturbations of a classical field

Linearized equation of motion around a classical background

$$\left[\Box_x + V''(\mathcal{A}(x))\right] \frac{\alpha(x)}{\alpha(x)} = 0 \qquad , \quad \frac{\alpha(x)}{\alpha(x)} = \frac{\alpha(x)}{\alpha(x)} \text{ on } \Sigma$$

Formal solution

· Diagrammatic interpretation :

A(x)

Small perturbations of a classical field

Linearized equation of motion around a classical background

$$\left[\Box_x + V''(\mathcal{A}(x))\right] \frac{\alpha(x)}{\alpha(x)} = 0 \qquad , \quad \frac{\alpha(x)}{\alpha(x)} = \frac{\alpha(x)}{\alpha(x)} \text{ on } \Sigma$$

Formal solution

• Diagrammatic interpretation :

Small perturbations of a classical field

Translation operator for the initial field

$$\mathfrak{F}[\mathcal{A}_{\text{initial}} + \alpha] \equiv \exp\left[\int_{\vec{u} \in \Sigma} \left[\alpha \cdot \mathbb{T}\right]_{\vec{u}}\right] \, \mathfrak{F}[\mathcal{A}_{\text{initial}}]$$

• This formula means that \mathbb{T}_u is the generator of shifts of the initial value of the classical field $\mathcal A$

 A loop can be obtained by shifting the initial condition of A at two points

23/39

- A loop can be obtained by shifting the initial condition of A at two points
- A term linear in $\ensuremath{\mathbb{T}}$ is necessary if the loop is entirely below the initial surface

- A loop can be obtained by shifting the initial condition of A at two points
- A term linear in T is necessary if the loop is entirely below the initial surface

Single field at NLO

$$\boldsymbol{A}_{\text{NLO}} = \left[\frac{1}{2}\int\limits_{\mathbf{u},\mathbf{v}} \boldsymbol{\Gamma}_{2}(\mathbf{u},\boldsymbol{v}) \, \mathbb{T}_{\mathbf{u}} \mathbb{T}_{\mathbf{v}} + \int\limits_{\mathbf{u}} \boldsymbol{\alpha}(\mathbf{u}) \, \mathbb{T}_{\mathbf{u}} \right] \, \boldsymbol{A}_{\text{LO}}$$

- A loop can be obtained by shifting the initial condition of A at two points
- A term linear in T is necessary if the loop is entirely below the initial surface

Single field at NLO

$$\mathbf{A}_{\text{NLO}} = \left[\frac{1}{2}\int\limits_{\mathbf{u},\mathbf{v}} \mathbf{\Gamma}_{2}(\mathbf{u},\mathbf{v}) \, \mathbb{T}_{\mathbf{u}} \mathbb{T}_{\mathbf{v}} + \int\limits_{\mathbf{u}} \boldsymbol{\alpha}(\mathbf{u}) \, \mathbb{T}_{\mathbf{u}} \right] \, \mathbf{A}_{\text{LO}}$$

Works also for any observable expressible in terms of the field at LO

But there is no free lunch...

- For this formula to be true, the functions Γ_2 and α must be determined consistently :
 - Γ_2 = dressed propagator with endpoints on Σ
 - α = 1-point function at 1-loop with endpoint on Σ
- This is almost as hard as doing the NLO calculation!
 (law of conservation of difficulty...)
- In some cases, there is an advantage :
 - If Σ is at $t = -\infty$, then Γ_2 is trivial and $\alpha = 0$
 - When the classical field is simple below Σ and complicated above, then Γ_2 and α are simpler to calculate than the NLO observable above Σ

Example: nucleus-nucleus collisions

Sources located on the light-cone:

$$J^{\mu} = \delta^{\mu+} \underbrace{\rho_1(x^-, x_{\perp})}_{\sim \delta(x^-)} + \delta^{\mu-} \underbrace{\rho_2(x^+, x_{\perp})}_{\sim \delta(x^+)}$$

- Region 0 : $A^{\mu} = 0$
- Regions 1,2 : \mathcal{A}^{μ} depends only on ρ_1 or ρ_2 (known analytically)
- Region 3 : A^μ = radiated field after the collision, only known numerically

Example: nucleus-nucleus collisions

Sources located on the light-cone:

$$J^{\mu} = \delta^{\mu +} \underbrace{\rho_1(x^-, x_{\perp})}_{\sim \delta(x^-)} + \delta^{\mu -} \underbrace{\rho_2(x^+, x_{\perp})}_{\sim \delta(x^+)}$$

• Region 0 : $A^{\mu} = 0$

25/39

- Regions 1,2 : A^μ depends only on ρ_1 or ρ_2 (known analytically)
- Region 3 : A^μ = radiated field after the collision, only known numerically

 \Longrightarrow choose Σ just above the forward light-cone

and Resummation

Instabilities

Mode decomposition of Γ_2

$$\Gamma_2(x,y) = \int_{\text{modes } k} \alpha_k(x) \alpha_k^*(y)$$

with

$$\left[\Box_x + V''(\mathcal{A}(x))\right] \frac{\alpha_k(x)}{\alpha_k(x)} = 0 \qquad , \quad \lim_{t \to -\infty} \frac{\alpha_k(x)}{\alpha_k(x)} = e^{\mathrm{i} k \cdot x}$$

Mode decomposition of Γ_2

$$\Gamma_2(x, y) = \int_{\text{modes } k} \alpha_k(x) \alpha_k^*(y)$$

with

$$\left[\Box_x + V''({\color{black}\mathcal{A}}(x))\right] \frac{\alpha_k(x)}{\alpha_k(x)} = 0 \qquad , \quad \lim_{t \to -\infty} \frac{\alpha_k(x)}{\alpha_k(x)} = e^{i\,k\cdot x}$$

- The equation of motion of the of the mode functions α_k is linear
- Some of the modes can be unstable
- What happens to the NLO observables?

Yang-Mills theory: Weibel instabilities for small perturbations

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold, Lenaghan, Moore (2003), Rebhan, Romatschke, Strickland (2005), Arnold, Lenaghan, Moore, Yaffe (2005), Romatschke, Rebhan (2006), Bodeker, Rummukainen (2007),...

27/39

Yang-Mills theory: Weibel instabilities for small perturbations

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold, Lenaghan, Moore (2003), Rebhan, Romatschke, Strickland (2005), Arnold, Lenaghan, Moore, Yaffe (2005), Romatschke, Rebhan (2006), Bodeker, Rummukainen (2007)....1

- For some k's, the field fluctuations α_k diverge like $\exp \sqrt{\mu \tau}$ when $\tau \to +\infty$
- Some components of $T^{\mu\nu}$ have secular divergences when evaluated at fixed loop order
- When $\alpha_k \sim A \sim q^{-1}$, the power counting breaks down and additional contributions must be resummed:

$$g e^{\sqrt{\mu \tau}} \sim 1$$
 at $\tau_{max} \sim \mu^{-1} \log^2(g^{-1})$

27/39

ϕ^4 scalar field theory

· Lyapunov exponent for the mode k:

$$\mu_{\mathbf{k}} \equiv \frac{1}{T} \ln \left(\frac{\alpha_{\mathbf{k}}(t+T)}{\alpha_{\mathbf{k}}(t)} \right)$$

φ^4 scalar field theory : pathologies in fixed order calculations

φ^4 scalar field theory : pathologies in fixed order calculations

- Small correction to the energy density (protected by energy conservation)
- Secular divergence in the pressure

Improved power counting and resummation

$$\mathbb{T} \sim e^{\sqrt{\mu\tau}}$$

• 1 loop : $(ge^{\sqrt{\mu\tau}})^2$

Improved power counting and resummation

$$\mathsf{Loop} \sim \mathsf{g}^2 \qquad , \qquad \mathbb{T} \sim \mathsf{e}^{\sqrt{\mu\tau}}$$

$$\mathbb{T} \sim e^{\sqrt{\mu\tau}}$$

 1 loop : $(ge^{\sqrt{\mu\tau}})^2$

30/39

• 2 disconnected loops : $(ge^{\sqrt{\mu\tau}})^4$

Improved power counting and resummation

Loop
$$\sim g^2$$
 , $\mathbb{T} \sim e^{\sqrt{\mu \tau}}$

$$\mathbb{T} \sim e^{\sqrt{\mu \tau}}$$

- 1 loop : $(qe^{\sqrt{\mu\tau}})^2$
- 2 disconnected loops $(ge^{\sqrt{\mu\tau}})^4$
- 2 entangled loops : $q(qe^{\sqrt{\mu\tau}})^3 > \text{subleading}$

Leading terms

- All disconnected loops to all orders
 - > exponentiation of the 1-loop result

Interlude...

$$e^{\frac{\alpha}{2}\delta_x^2} f(x) = \int_{-\infty}^{+\infty} dz \, \frac{e^{-z^2/2\alpha}}{\sqrt{2\pi\alpha}} f(x+z)$$

Resummation of the leading secular terms

$$\begin{array}{lcl} T_{\text{resummed}}^{\mu\nu} & = & \exp\left[\frac{1}{2}\int\limits_{\mathbf{u},\nu} \Gamma_{2}(\mathbf{u},\nu) \mathbb{T}_{\mathbf{u}} \mathbb{T}_{\nu}\right] T_{\text{LO}}^{\mu\nu} [\mathcal{A}_{\text{init}}] \\ \\ & = & \underbrace{T_{\text{LO}}^{\mu\nu} + T_{\text{NLO}}^{\mu\nu}}_{\text{in full}} + \underbrace{T_{\text{NNLO}}^{\mu\nu} + \cdots}_{\text{partially}} \end{array}$$

 The exponentiation of the 1-loop result collects all the terms with the worst time behavior

Resummation of the leading secular terms

- The exponentiation of the 1-loop result collects all the terms with the worst time behavior
- Equivalent to Gaussian fluctuations of the initial field + classical time evolution

Note: Classical field + Fluctuations = Coherent state

• This Gaussian distribution of initial fields is the Wigner distribution of a **coherent state** $|\mathcal{A}\rangle$

Coherent states are the "most classical quantum states"

Their Wigner distribution has the minimal support permitted by the uncertainty principle ($\mathfrak{O}(\hbar)$ for each mode)

• $|\mathcal{A}\rangle$ is not an eigenstate of the full Hamiltonian \rhd decoherence via interactions

Example:Schwinger mechanism

[FG, N. Tanji (2013)]

Scalar QED model

$$\begin{split} \mathcal{L} \equiv &\underbrace{-\frac{1}{4} F_{\mu\nu} F^{\mu\nu}}_{\text{photons}} + \underbrace{(D_{\mu} \varphi) (D^{\mu} \varphi)^* - m^2 \varphi^* \varphi - \frac{\lambda}{4} (\varphi \varphi^*)^2}_{\text{charged scalars}} + J^{\mu}_{\text{ext}} A_{\mu} \\ F^{\mu\nu} = &\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} \quad , \quad D^{\mu} \equiv \partial^{\mu} - i e A^{\mu} \quad , \end{split}$$

- Two coupling constants :
 e (electrical charge) and λ (self-coupling)
- When the external field is static, no perturbative production
- Non perturbative production $\sim \exp(-\pi m^2/eE_{ext})$

• Comparison with the 1-loop QFT result (for $\lambda = 0$) :

35/39

- QFT = 1-loop quantum field theory
- CSS = classical statistical simulation

Mass renormalization

• When $\lambda \neq 0$, tadpoles give a quadratic cutoff dependence $\sim \Lambda^2$

 This can be compensated by a counterterm in the equation of motion:

$$\left(D_0^2 - \sum_i D_i D_i + m_0^2 + \delta m^2\right) \phi + \frac{\lambda}{2} (\phi^* \phi) \phi = 0,$$

• Comparison of bare and mass-renormalized results, for $\lambda=1$ (at very short time, so that we know that the scalar self-interactions should not have affected the system yet):

Summary

Summary

- In Quantum Field Theories coupled to strong sources :
 - The LO is expressible in terms of classical fields
 - The NLO can be related to the LO by an operator acting on the initial fields
- When the classical fields are unstable (i.e. in theories where the classical Hamiltonian has chaotic dynamics), the loop expansion is ill behaved
- The terms that have the fastest growth can be summed to all loop orders
 - The result of the resummation can be obtained by averaging the LO result over a Gaussian ensemble of initial conditions
- Accuracy : LO + NLO + leading secular terms