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Classical phase-space formulation of Quantum Mechanics

• Consider the von Neumann equation for the density operator :

∂ρ̂τ

∂τ
= ih̄

[
Ĥ, ρ̂τ

]
(**)

• Introduce the Wigner transforms :

Wτ(x,p) ≡
∫
ds eip·s

〈
x+

s

2

∣∣ρ̂τ∣∣x− s
2

〉
H(x,p) ≡

∫
ds eip·s

〈
x+

s

2

∣∣Ĥ∣∣x− s
2

〉
(classical Hamiltonian)

(**) is equivalent to :

∂Wτ

∂τ
= H(x,p)

2

ih̄
sin
(
ih̄

2

( ←
∂p

→
∂x −

←
∂x

→
∂p

))
Wτ(x,p)

=
{
H,Wτ

}︸ ︷︷ ︸
Poisson bracket

+O(h̄2)
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Classical statistical method in Quantum Mechanics

• Quantum effects in the time evolution are O(h̄2) corrections
(i.e. they appear at NNLO and beyond)

• O(h̄) (NLO) contributions can only come from the initial state
Uncertainty principle : ∆x · ∆p ≥ h̄
The initial Wigner distribution Wτ=0(x,p) must have a support of
area at least h̄ (minimal area realized by coherent states)

• All the O(h̄) effects can be accounted for by a Gaussian initial
distribution Wτ=0(x,p)

Classical statistical method

• Sample by a Monte-Carlo the Gaussian distribution that
approximates the initial distribution Wτ=0(x,p)

• For each initial (x,p), solve the classical equation of motion up to
the time of interest
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Decoherence and micro-canonical equilibration

Q

P

• For non-harmonic oscillators, the oscillation frequency depends
on the initial condition

• Because of QM, the initial ensemble is a set of width & h̄

• This ensemble of initial configurations spreads in time

• At large times, the ensemble fills densely all the region allowed
by energy conservation ⇒ microcanonical equilibrium
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Quantum Field Theory
w/ Strong Sources
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Typical situation

1

2
(∂µφ)(∂

µφ) − V(φ) + Jφ

• In general, the source J is space and time dependent
• The system starts at t = −∞ from a known initial state

(example: vacuum state)
• The source may be turned off at some point, and the system

evolves by itself afterwards

Strong source : J ∼ inverse coupling

• Non-perturbative
=⇒ can we expand in powers of the coupling?

• Spectrum of produced particles?
• After the sources are switched off : how does

the system equilibrate?
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Example I : Schwinger mechanism

• Consider a constant and uniform electrical field ~Eext

• Perturbatively, energy conservation prevents the production of
e+e− pairs

• Pairs can be produced via a vacuum instability

• Rate : exp(−πm2/eE) (non analytic in the coupling e)

• In Quantum Field Theory, can be obtained at one loop (but one
must use the propagator dressed by the external field)
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Example II : Nucleus-Nucleus collisions at high energy

?

L = −
1

4
FµνF

µν + (Jµ1 + Jµ2︸ ︷︷ ︸
Jµ

)Aµ

• Given the sources J1,2 in each projectile, how do we calculate
observables? Is there some kind of perturbative expansion?

• Loop corrections, factorization?

• Thermalization?
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Strong source regime

• Weak sources : perturbative treatment

• Strong sources : non-perturbative (when J ∼ 1/g)
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Power counting

Order of connected subdiagram when J ∼ g−1 :

1

g2
g# produced gluons g2(# loops)
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Power counting

• Example : single particle spectrum :

dN1

d3~p
=
1

g2

[
c0 + c1 g

2 + c2 g
4 + · · ·

]
• The coefficients c0, c1, · · · are themselves series that resum all

orders in (gJ)n. For instance,

c0 =

∞∑
n=0

c0,n (gJ)n

• We want to calculate at least the entire c0/g2 contribution, and a
subset of the higher order terms
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Inclusive observables

• Inclusive observables do not veto any final state
Example: moments of the transition probabilities :

dN1

d3~p
∼

∞∑
n=0

(n + 1)

∫
1

(n + 1)!

[
dΦ1 · · ·dΦn︸ ︷︷ ︸
n part. phase-space

] ∣∣∣〈pp1 · · ·pnout
∣∣0in
〉∣∣∣2

(single inclusive particle distribution)

Equivalent definition :

dN1

d3~p
∼
〈
0in
∣∣a†out(p)aout(p)

∣∣0in
〉

(completeness of the out-states)
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Bookkeeping

• Start with transition amplitudes : sources→ particles

• Consider squared amplitudes (including interferences)
• See them as cuts through vacuum diagrams

Cut propagator ∼ δ(p2)

Weight each cut by z(p) → generating functional

F[z] ≡
∑
n

1

n!

∫ [
dΦ1 · · ·dΦn

]
z(p1) · · · z(pn)

∣∣∣〈p1 · · ·pnout
∣∣0in
〉∣∣∣2
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Generating functional

• Observables are given by derivatives of F[z], e.g.

dN1

d3~p
=
δF[z]

δz(p)

∣∣∣∣
z=1

(inclusive observables are derivatives at the point z = 1)

unitarity implies F[1] = 1

Exact formula for the first derivative :

δ log F[z]
δz(p)

=

∫
d4xd4y eip·(x−y) �x�y

[
A+(x)A−(y) + G+−(x, y)

]
where A± and G+− are connected 1- and 2-point functions in the
Schwinger-Keldysh formalism, with cut propagators weighted by z(p)
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Schwinger-Keldysh formalism

• Set of Feynman rules to compute directly transition probabilities
(i.e. AA∗)

• This can be achieved as follows :

• A vertex is −ig on one side of the cut, and +ig on the other side

• There are four propagators, depending on the location w.r.t. the cut
of the vertices they connect :

G0++(p) = i/(p
2 −m2 + iε) (standard Feynman propagator)

G0−−(p) = −i/(p2 −m2 − iε) (complex conjugate of G0++(p))

G0+−(p) = 2π z(p) θ(−p
0)δ(p2 −m2)

• At each vertex of a given diagram, sum over the types + and −
(2n terms for a diagram with n vertices)
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Inclusive Observables
at Leading Order
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Single inclusive spectrum

• The single inclusive spectrum is given by :

dN1

d3p
=
δF[z]

δ(p)

∣∣∣∣
z=1

=

∫
d4xd4y eip·(x−y) �x�y

[
A+(x)A−(y)+G+−(x, y)

]
z=1

• Two types of terms :

A+(x)A−(y) →

G+−(x, y) →
François Gelis Field theories with strong sources 14/39 Kyoto, December 2013
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Leading Order

• LO ≡ tree diagrams

B the second terms can be ignored

• In each blob, we must sum over all the tree diagrams, and over
all the possible cuts :

dN1

d3p

∣∣∣∣
LO

=
∑
trees

∑
cuts

tree

tree

• Note : at this point, we set z(p) = 1
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Expression in terms of classical fields

• When summing over the cuts in a tree diagram, we only get the
following combinations of propagators :

G0++(p) −G
0
+−(p)

G0−+(p) −G
0
−−(p)

Retarded propagator

G0++(p) −G
0
+−(p) = G

0
−+(p) −G

0
−−(p)= G

0

R
(p) (retarded propagator)

• For any tree diagram contributing to the 1-point functions A±, the
sum over the ± indices at the vertices simply transforms all the
propagators into retarded propagators
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Retarded classical fields

Sum of trees with retarded propagators :

�A+U′(A) = j , lim
x0→−∞A(x) = 0

• Expansion in powers of J (for cubic interactions) :

• Built with retarded propagators

• Classical solutions resum the full series of tree diagrams
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�A+U′(A) = j , lim
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• Expansion in powers of J (for cubic interactions) :

+ + + +
1

2

1

2

1

2

1

8
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Inclusive particle spectrum at LO

• The particle spectrum at LO is given by :

dN1

d3~p

∣∣∣∣
LO

=
1

16π3

∫
x,y

eip·(x−y) �x�y A(x)A(y)

where A(x) is the classical solution such that limx0→−∞A(x) = 0

• NOTE : if the source J is time independent, no particles can be
produced at LO (because A(x) has no time-like Fourier modes)
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Next–to–
Leading Order
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Why the LO may be insufficient ?

• Naive perturbative expansion :

dN

d3~p
=
1

g2

[
c0 + c1 g

2 + c2 g
4 + · · ·

]
Note : so far, we have seen how to compute c0

• The source is time dependent, and particle production is
impossible at LO

• The description of the projectiles as external sources is valid for
modes with large longitudinal momenta k± > Λ. Loop
corrections produce logs of this unphysical cutoff. The logs must
be computed and resummed

• In QCD and other theories, there are instabilities that cause the
coefficients cn to grow indefinitely with time. These secular
terms must be resummed
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Cauchy problem for classical fields

Green’s formula for classical solutions

A(x) = i

∫
y∈Ω

G0
R
(x, y)

[
J(y) − V ′(A(y))

]
+ i

∫
y∈Σ

G0
R
(x, y) (n·

↔
∂y)Ainit(y)

Ω

Σ
dyµ

y

nµ

A(x)

A
init

J

Σ
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Small perturbations of a classical field

Linearized equation of motion around a classical background[
�x + V

′′(A(x))
]
a(x) = 0 , a(x) = α(x) on Σ

Formal solution[
αT

]
y
≡ α(y)

δ

δAinit(y)
+ (n · ∂α(y)) δ

δ(n · ∂Ainit(y))

a(x) ≡
∫

y∈Σ

[
αT

]
y

A(x)

• Diagrammatic interpretation :
A(x)

A
init

J

Σ
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Small perturbations of a classical field

Translation operator for the initial field

F[Ainitial + α] ≡ exp

[ ∫
~u∈Σ

[
α ·T

]
u

]
F[Ainitial]

• This formula means that Tu is the generator of shifts of the initial
value of the classical field A
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Reconstructing the NLO from the LO

A
NLO
(x)(1)

Γ2

J

Σ

• A loop can be obtained by shifting the initial
condition of A at two points

• A term linear in T is necessary if the loop is
entirely below the initial surface

Single field at NLO

ANLO =

[
1

2

∫
u,v

Γ2(u, v)TuTv +

∫
u

α(u)Tu

]
ALO

Works also for any observable expressible in terms of the field at LO

ONLO =

[
1

2

∫
u,v

Γ2(u, v)TuTv +

∫
u

α(u)Tu

]
OLO
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But there is no free lunch...

• For this formula to be true, the functions Γ2 and α must be
determined consistently :

• Γ2 = dressed propagator with endpoints on Σ

• α = 1-point function at 1-loop with endpoint on Σ

• This is almost as hard as doing the NLO calculation !
(law of conservation of difficulty...)

• In some cases, there is an advantage :
• If Σ is at t = −∞, then Γ2 is trivial and α = 0

• When the classical field is simple below Σ and complicated above,
then Γ2 and α are simpler to calculate than the NLO observable
above Σ
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Example : nucleus-nucleus collisions

• Sources located on the light-cone:

Jµ = δµ+ ρ1(x
−, x⊥)︸ ︷︷ ︸

∼δ(x−)

+δµ− ρ2(x
+, x⊥)︸ ︷︷ ︸

∼δ(x+)

z

t

0

21

3

• Region 0 : Aµ = 0

• Regions 1,2 : Aµ depends
only on ρ1 or ρ2
(known analytically)

• Region 3 : Aµ = radiated field
after the collision, only known
numerically

=⇒ choose Σ just above the forward light-cone
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Instabilities
and Resummation
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Mode decomposition of Γ2

Γ2(x, y) =

∫
modes k

αk(x)α
∗
k(y)

with[
�x + V

′′(A(x))
]
αk(x) = 0 , lim

t→−∞αk(x) = e
ik·x

• The equation of motion of the of the mode functions αk is linear

• Some of the modes can be unstable

• What happens to the NLO observables?
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Yang-Mills theory : Weibel instabilities for small perturbations

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold, Lenaghan,
Moore (2003), Rebhan, Romatschke, Strickland (2005), Arnold, Lenaghan,
Moore, Yaffe (2005), Romatschke, Rebhan (2006), Bodeker, Rummukainen
(2007),...]
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[Romatschke, Venugopalan (2005)]
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Yang-Mills theory : Weibel instabilities for small perturbations

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold, Lenaghan,
Moore (2003), Rebhan, Romatschke, Strickland (2005), Arnold, Lenaghan,
Moore, Yaffe (2005), Romatschke, Rebhan (2006), Bodeker, Rummukainen
(2007),...]

• For some k’s, the field fluctuations ak diverge
like exp

√
µτ when τ→ +∞

• Some components of Tµν have secular divergences when
evaluated at fixed loop order

• When ak ∼ A ∼ g−1, the power counting breaks down and
additional contributions must be resummed :

g e
√
µτ ∼ 1 at τmax ∼ µ−1 log2(g−1)
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φ4 scalar field theory

• Lyapunov exponent for the mode k :

µk ≡
1

T
ln
(
ak(t+ T)

ak(t)

)

 0
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φ4 scalar field theory : pathologies in fixed order calculations

LO
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time

PLO εLO

• Small correction to the energy density
(protected by energy conservation)

• Secular divergence in the pressure
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φ4 scalar field theory : pathologies in fixed order calculations

LO + NLO
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Improved power counting and resummation

Loop ∼ g2 , T ∼ e
√
µτ

u

T
µν
(x)

vΓ
2
(u,v)

• 1 loop :
(ge
√
µτ)2

• 2 disconnected loops :
(ge
√
µτ)4

• 2 entangled loops :
g(ge

√
µτ)3 B subleading

Leading terms

• All disconnected loops to all orders
B exponentiation of the 1-loop result
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Improved power counting and resummation

Loop ∼ g2 , T ∼ e
√
µτ

T
µν
(x)

Γ3(u,v,w)

• 1 loop :
(ge
√
µτ)2

• 2 disconnected loops :
(ge
√
µτ)4

• 2 entangled loops :
g(ge

√
µτ)3 B subleading

Leading terms

• All disconnected loops to all orders
B exponentiation of the 1-loop result
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Interlude...

e
α
2
∂2x f(x) =

+∞∫
−∞

dz
e−z

2/2α

√
2πα

f(x+ z)
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Resummation of the leading secular terms

Tµν
resummed

= exp

[
1

2

∫
u,v

Γ2(u, v)TuTv

]
Tµν

LO
[Ainit]

= Tµν
LO

+ Tµν
NLO︸ ︷︷ ︸

in full

+ Tµν
NNLO

+ · · ·︸ ︷︷ ︸
partially

• The exponentiation of the 1-loop result collects all the terms with
the worst time behavior

• Equivalent to Gaussian fluctuations of the initial field
+ classical time evolution
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Resummation of the leading secular terms

Tµν
resummed

= exp

[
1

2

∫
u,v

Γ2(u, v)TuTv

]
Tµν

LO
[Ainit]

=

∫
[Da] exp

[
−
1

2

∫
u,v

a(u)Γ−12 (u, v)a(v)

]
Tµν

LO
[Ainit + a]

• The exponentiation of the 1-loop result collects all the terms with
the worst time behavior

• Equivalent to Gaussian fluctuations of the initial field
+ classical time evolution
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Note : Classical field + Fluctuations = Coherent state

• This Gaussian distribution of initial fields is the Wigner
distribution of a coherent state

∣∣A〉
Coherent states are the “most classical quantum states”

Their Wigner distribution has the minimal support permitted by
the uncertainty principle (O(h̄) for each mode)

•
∣∣A〉 is not an eigenstate of the full Hamiltonian
B decoherence via interactions
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Example :
Schwinger mechanism

[FG, N. Tanji (2013)]
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Scalar QED model

L ≡ −
1

4
FµνF

µν︸ ︷︷ ︸
photons

+(Dµφ)(D
µφ)∗ −m2φ∗φ−

λ

4
(φφ∗)2︸ ︷︷ ︸

charged scalars

+JµextAµ

Fµν = ∂µAν − ∂νAµ , Dµ ≡ ∂µ − ieAµ ,

• Two coupling constants :
e (electrical charge) and λ (self-coupling)

• When the external field is static, no perturbative production

• Non perturbative production ∼ exp(−πm2/eEext)

François Gelis Field theories with strong sources 34/39 Kyoto, December 2013



François Gelis

35

• Comparison with the 1-loop QFT result (for λ = 0) :

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-5  0  5  10  15  20

f(
p

)

pz

QFT  t = 1

QFT  t = 5

QFT  t = 10

CSS  t = 1

CSS  t = 5

CSS  t = 10

• QFT = 1-loop quantum field theory

• CSS = classical statistical simulation
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Mass renormalization

• When λ 6= 0, tadpoles give a quadratic cutoff dependence ∼ Λ2

x x x

x x x x

x x x
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• This can be compensated by a counterterm in the equation of
motion :(

D20 −
∑
i

DiDi +m
2
0 + δm

2
)
ϕ+

λ

2
(ϕ∗ϕ)ϕ = 0 ,

x x x

x x
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• Comparison of bare and mass-renormalized results, for λ = 1
(at very short time, so that we know that the scalar
self-interactions should not have affected the system yet) :

 0
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 2

-5  0  5  10  15  20
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p
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pz

e
- 0.27 π

e
- 0.01 π

λ = 0

λ = 1, bare

λ = 1, subtracted
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Summary
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Summary

• In Quantum Field Theories coupled to strong sources :

• The LO is expressible in terms of classical fields

• The NLO can be related to the LO by an operator
acting on the initial fields

• When the classical fields are unstable (i.e. in theories where the
classical Hamiltonian has chaotic dynamics), the loop expansion
is ill behaved

• The terms that have the fastest growth can be summed to all
loop orders
The result of the resummation can be obtained by averaging the
LO result over a Gaussian ensemble of initial conditions

• Accuracy : LO + NLO + leading secular terms
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