Derivation of experimental cross-sections for in-flight fission fragments from a ${ }^{238} \mathrm{U}$ beam

Our experimental cross sections of fission fragments are dependent on the abrasion-fission 3EER model [NIM B 266, 4657 (2008)] in the LISE ${ }^{++}$simulation because the transmission efficiencies in the BigRIPS separator are evaluated by the LISE ${ }^{++}$simulation. In the 3EER model used in the LISE ${ }^{++}$simulation, the cross sections of fission fragments are given by sums of cross sections via the 3 fissile nuclei in the LISE ${ }^{++}$simulation.

$$
Y^{L I S E}=\left(\sigma_{R 4}^{L I S E} \times T_{R 4}+\sigma_{R 5}^{L I S E} \times T_{R 5}+\sigma_{R 6}^{L I S E} \times T_{R 6}\right) \times N_{b} \times N_{t}
$$

To deduce the experimental cross-sections based on the 3EER model, the followings are assumed.

1. The experimental ratio of the yields produced from the 3 fissile nuclei is the same with LISE^{++}simulation.
2. The experimental transmission efficiencies of fragments are the same with the LISE ${ }^{++}$simulation.
3. The parameters of 3 EER model are used. (shown in Table. 1)

Thus,

$$
\begin{aligned}
Y^{\text {exp }} & =\left(\sigma_{R 4}^{\text {exp }} \times T_{R 4}+\sigma_{R 5}^{e x p} \times T_{R 5}+\sigma_{R 6}^{e x p} \times T_{R 6}\right) \times N_{b} \times N_{t} \\
& =\left(C \cdot \sigma_{R 4}^{L I S E} \times T_{R 4}+C \cdot \sigma_{R 5}^{L I S E} \times T_{R 5}+C \cdot \sigma_{R 6}^{L I S E} \times T_{R 6}\right) \times N_{b} \times N_{t}
\end{aligned}
$$

are obtained.
Here,

$$
C=Y^{\exp } / Y_{Y^{L I S E}}
$$

The experimental cross sections are given as,

$$
\begin{aligned}
\sigma_{R 4}^{\exp } & =C \times \sigma_{R 4}^{L I S E} \\
\sigma_{R 5}^{\exp } & =C \times \sigma_{R 5}^{L I S E} \\
\sigma_{R 6}^{\exp } & =C \times \sigma_{R 6}^{L I S E} \\
\sigma^{\exp } & =\sigma_{R 4}^{\exp }+\sigma_{R 5}^{\exp }+\sigma_{R 6}^{\exp }
\end{aligned}
$$

$Y:$ the yield of fragment
σ : the cross section
T : the transmission efficiency
R : Reaction type
N_{b} : the total dose of ${ }^{238} \mathrm{U}$
N_{t} : the number of target atoms per unit area

Table 1. The parameter of 3EER model.

	Low	Middle	High
Fissile	${ }^{236} \mathrm{U}$	${ }^{226} \mathrm{Th}$	${ }^{220} \mathrm{Ra}$
$\mathrm{E}(\mathrm{MeV})$	23.5	100	250
$\sigma(\mathrm{mb})$	200	500	350

