THE ACTIVE TARGET TIME PROJECTION CHAMBER AT NSCL
 D. Bazin

National Superconducting Cyclotron Laboratory Michigan State University

Luminosity with slow radioactive beams

- Solid targets provide poor luminosity
- Inverse kinematics reactions in solid targets (probe)
- Target-like particle has little energy to leave target material
- Compromise between resolution and number of nuclei in target (resolution goes against luminosity)

Luminosity with slow radioactive beams

- Solid targets provide poor luminosity
- Inverse kinematics reactions in solid targets (probe)
- Target-like particle has little energy to leave target material
- Compromise between resolution and number of nuclei in target (resolution goes against luminosity)
- New approach: active target + time projection chamber
- Target no longer inert material, but used also to detect particles
- Gas target ideal for low energies
- Time Projection Chamber tracks particles from the vertex of the reaction (no lost energy in inert target)

Active Target Time Projection Chamber

- A detector tailored to low energy reactions
- Active gas target and full 4π angular coverage
- High luminosity without loss of resolution
- Beam slowing in gas gives excitation function

Active Target Time Projection Chamber

- A detector tailored to low energy reactions
- Active gas target and full 4π angular coverage
- High luminosity without loss of resolution
- Beam slowing in gas gives excitation function
- Requirements and restrictions
- Target gas has to provide good electron amplification (mixtures)
- Trigger generation: slowing down beam particle ionize the gas
- Time projection chamber is slow (rate limitation)

Active Target Time Projection Chamber

- A detector tailored to low energy reactions
- Active gas target and full 4π angular coverage
- High luminosity without loss of resolution
- Beam slowing in gas gives excitation function
- Requirements and restrictions
- Target gas has to provide good electron amplification (mixtures)
- Trigger generation: slowing down beam particle ionize the gas
- Time projection chamber is slow (rate limitation)

Very well adapted to rare isotope beams!

Principle of operation

Insulator gas volume (N_{2})
Field shaping rings

Pad plane and electron amplification device (Micromegas)

AT-TPC concept

- Straight and tilted $\left(7^{\circ}\right)$ configurations
- Tilt relative to beam axis to increase accuracy for small angles
- Placed inside 2 Tesla solenoid (increase range and measure Brho)
- 250 liters (1 m by 55 cm) active volume

Detector details

- Based on prototype design with few improvements

Detector installation \& servicing

(5)

NSCL

Electron amplifier: Micromegas

- Negligible charge spread, sharp images
- Very robust against sparking
- Can operate in different conditions (gases, pressures)

Close-up on Micromegas

10,240 pad plane geometry

- Optimized for detector inclinations from 0° to 7° relative to beam axis
- 4 small triangles in a large one
- Small triangle side $=4.67 \mathrm{~mm}$
- 55 cm diameter disk

Digital Readout Electronics

- Accommodate electronics for the 10,240 pads without cable connections
- 40 front-end cards fit in pentagonal pattern
- Shielding covers electronics cards by pairs
- Only 7,000 channels
 instrumented (3 receiver
(5) ${ }^{\text {cards on loan in France) }}$

GET (General Electronics for TPCs)

- Trigger needs to filter out unreacted beam events
- GET electronics provides discriminators on each pad
- Running multiplicities of each AsAd routed to MuTanT through CoBos
- Trigger configuration can be programmed
- AGET front-end chips provide various gains and shaping times
- GET: CEA-Saclay, CENBG-

(a) ${ }^{\text {Bordeaux, GANIL-Caen, NSCL }}$

Example of reconstructed event

- Track from alpha source placed inside the active volume

Example of reconstructed event

- Track from alpha source placed inside the active volume
- 3D plot clearly show time correlation

Example of reconstructed event

- Track from alpha source placed inside the active volume
- 3D plot clearly show time correlation
- Individual traces show difference in amplitude between small and large pads

Trigger generation

- Define pad regions . Trigger enabled with different trigger • Reading if hit
- Example shows configuration for elastic scattering
- More complex pattern triggering configuration can be programmed • Pad not connected

ㄴ.000.0
 attributes -

Reading if hit

Commissioning on ReA3 linac

- Beam provided: ${ }^{4} \mathrm{He}$ @ 6 MeV

Gas target: He (90\%) CO_{2} (10\%) 100 Torr

- No magnetic field
- Measure excitation function of (${ }^{4} \mathrm{He},{ }^{4} \mathrm{He}$) elastic scattering

Online event display

- Atypical event shows two scattering events in one shot
- Maximum drift time of $40 \mu s$
- instantaneous beam rate of ~ $3 \mathrm{kHz}(600 \mathrm{~Hz}$ @ 20\% duty cycle)

Experimental program with PAT-TPC

- Alpha cluster structure of neutron-rich nuclei
- Resonant scattering: ${ }^{6} \mathrm{He}+{ }^{4} \mathrm{He},{ }^{10} \mathrm{Be}+{ }^{4} \mathrm{He},{ }^{8} \mathrm{He}+{ }^{4} \mathrm{He}$ (not yet): TWINSOL @ U. of Notre-Dame, ISAC @ TRIUMF (not yet)
- Fusion cross section studies
- ${ }^{6} \mathrm{He}+{ }^{40}$ Ar sub-barrier fusion cross sections: TWINSOL @ U. of Notre-Dame
- Isobaric analog proton scattering
- Test on ${ }^{124} \mathrm{~S} n+p$, experiment on ${ }^{132} \mathrm{Sn}+\mathrm{p}$ (not yet): ATLAS @ Argonne National Laboratory
- 3α decay mode of Hoyle state in ${ }^{12} \mathrm{C}$
- β-decay of ${ }^{12}$ B implanted in PAT-TPC: TWINSOL @ U. of Notre-Dame
D. Suzuki et al., Nuclear Instruments and Methods in Physics Research A 691 (2012) 39-54

${ }^{6} \mathrm{He}+{ }^{4} \mathrm{He}$ scattering

- Missing mass reconstruction
- E_{x} from TKE, scattering angle of ${ }^{4} \mathrm{He}$ and energy of ${ }^{6} \mathrm{He}$
- Energy of ${ }^{6} \mathrm{He}$ before reaction known from vertex determination
- $E_{x}{ }^{\theta}$ from angles only
- 2^{+}scatter in $E_{x}{ }^{\theta}$ from
${ }^{6} \mathrm{He}\left({ }^{4} \mathrm{He}, 2 n\right)^{8}$ Be channel

Excitation functions \& Angular distributions

- Elastic and inelastic scattering measured between 2 and 6 MeV

Angular distributions measured between 40° and 130°

- Peak at 2.56 MeV corresponds to $9.98(15) \mathrm{MeV}$ resonance in ${ }^{10} \mathrm{Be}$, identified as 4^{+}
- Deduced partial width Γ_{α} / Γ of $0.49(5)$ indicate highly developed a structure
D. Suzuki et al., Phys. Rev. C 87, 054301 (2013)

Excitation functions \& Angular distributions

- Elastic and inelastic scattering measured between 2 and 6 MeV
- Angular distributions measured between 40° and 130°
- Peak at 2.56 MeV corresponds to $9.98(15) \mathrm{MeV}$ resonance in ${ }^{10} \mathrm{Be}$, identified as $4{ }^{+}$
- Deduced partial width Γ_{α} / Γ of $0.49(5)$ indicate highly developed α structure
D. Suzuki et al., Phys. Rev. C 87, 054301 (2013)

Original AT-TPC scientific program

National Science Foundation funding of \$688k

Exciting physics program planned and to develop!

Table 1: Overview of the AT-TPC scientific program.

Measurement	Physics	Beam Examples	Beam Energy (A MeV)	Min Beam (pps)	Scientific Leader
Transfer \& Resonant Reactions	Nuclear Structure	${ }^{32} \mathrm{Mg}(\mathrm{d}, \mathrm{p})^{33} \mathrm{Mg}$ ${ }^{26} \mathrm{Nee}(\mathrm{p}, \mathrm{p})^{26} \mathrm{Ne}$ $66, ., 70$ $\mathrm{Ni}(\mathrm{p}, \mathrm{p})$	3	100	Kanungo
Astrophysical Reactions	Nucleosynthesis	${ }^{25} \mathrm{Al}\left({ }^{3} \mathrm{He}, \mathrm{d}\right)^{26} \mathrm{Si}$	3	100	Famiano, Montes
Fusion and Breakup	Nuclear Structure	${ }^{8} \mathrm{~B}+{ }^{40} \mathrm{Ar}$	3	1000	Kolata
Transfer	Pairing	${ }^{56} \mathrm{Ni}+{ }^{3} \mathrm{He}$	$5-19$	1000	Macchiavelli
Fission Barriers	Nuclear Structure	${ }^{199} \mathrm{Tl},{ }^{192} \mathrm{Pt}$	$20-60$	10,000	Phair
Giant Resonances	Nuclear EOS, Nuclear Astro.	${ }^{54} \mathrm{Ni}-{ }^{70} \mathrm{Ni}$, ${ }^{106} \mathrm{Sn}-{ }^{127} \mathrm{Sn}$	$50-200$	50,000	Garg
Heavy Ion Reactions	Nuclear EOS	$106 \mathrm{Sn}-{ }^{126} \mathrm{Sn}$, ${ }^{37} \mathrm{Ca}-{ }^{49} \mathrm{Ca}$	$50-200$	50,000	Lynch

AT-TPC team and collaboration

- NSCL team of 10 people
- Faculty: D. Bazin, W. Mittig, B. Lynch
- Engineers: N. Usher, F. Abu-Nimeh
- Post-docs: D. Suzuki (until 2012), T. Ahn, S. Beceiro-Novo
- Ph.D. students: A. Fritsch, J. Bradt
- Outside collaborators
- J. Kolata, U. Garg (U. of Notre-Dame)
- F. Bechetti (U. of Michigan)
- R. Kanungo (Saint Mary's U.)
- M. Heffner (LLNL)
- I-Yang Lee, L. Phair (LBL)

