THE ACTIVE TARGET TIME PROJECTION CHAMBER AT NSCL

D. Bazin National Superconducting Cyclotron Laboratory Michigan State University

Luminosity with slow radioactive beams

- Solid targets provide poor luminosity
- Inverse kinematics reactions in solid targets (probe)
- Target-like particle has little energy to leave target material
- Compromise between resolution and number of nuclei in target (resolution goes against luminosity)

Luminosity with slow radioactive beams

- Solid targets provide poor luminosity
- Inverse kinematics reactions in solid targets (probe)
- Target-like particle has little energy to leave target material
- Compromise between resolution and number of nuclei in target (resolution goes against luminosity)
- New approach: active target + time projection chamber
 - Target no longer inert material, but used also to detect particles
 - Gas target ideal for low energies
 - Time Projection Chamber tracks particles from the vertex of the reaction (no lost energy in inert target)

Active Target Time Projection Chamber

- A detector tailored to low energy reactions
- Active gas target and full 4π angular coverage
- High luminosity without loss of resolution
- Beam slowing in gas gives excitation function

Active Target Time Projection Chamber

- A detector tailored to low energy reactions
- Active gas target and full 4π angular coverage
- High luminosity without loss of resolution
- Beam slowing in gas gives excitation function
- Requirements and restrictions
 - Target gas has to provide good electron amplification (mixtures)
 - Trigger generation: slowing down beam particle ionize the gas
 - Time projection chamber is slow (rate limitation)

Active Target Time Projection Chamber

- A detector tailored to low energy reactions
- Active gas target and full 4π angular coverage
- High luminosity without loss of resolution
- Beam slowing in gas gives excitation function
- Requirements and restrictions
 - Target gas has to provide good electron amplification (mixtures)
 - Trigger generation: slowing down beam particle ionize the gas
 - Time projection chamber is slow (rate limitation)
- Very well adapted to rare isotope beams!

Principle of operation

Insulator gas volume (N_2)

Field shaping rings Cathode: - 100 kVDC (1kV/cm) Beam Electric field Active gas volume Drift time -> z He, H₂, D₂ ...

Pad plane and electron amplification device (Micromegas)

AT-TPC concept

- Straight and tilted (7°) configurations
- Tilt relative to beam axis to increase accuracy for small angles
- Placed inside 2 Tesla solenoid (increase range and measure Brho)
- 250 liters (1 m by 55 cm) active volume

Detector details

Based on prototype design with few improvements

Detector installation & servicing

D. Bazin, ARIS 2014, June 2, 2014

Electron amplifier: Micromegas

- Negligible charge spread, sharp images
- Very robust against sparking
- Can operate in different conditions (gases, pressures)

Close-up on Micromegas

D. Bazin, ARIS 2014, June 2, 2014

MICH

10,240 pad plane geometry

- Optimized for detector inclinations from 0° to 7° relative to beam axis
- 4 small triangles in a large one
- Small triangle side
 = 4.67 mm
- 55 cm diameter disk

Digital Readout Electronics

- Accommodate electronics for the 10,240 pads without cable connections
- 40 front-end cards fit in pentagonal pattern
- Shielding covers electronics cards by pairs
- Only 7,000 channels instrumented (3 receiver
 cards on loan in France)

GET (General Electronics for TPCs)

Trigger needs to filter out unreacted beam events

- GET electronics provides discriminators on each pad
- Running multiplicities of each AsAd routed to MuTanT through CoBos
- Trigger configuration can be programmed
- AGET front-end chips provide various gains and shaping times
- GET: CEA-Saclay, CENBG Bordeaux, GANIL-Caen, NSCL

Example of reconstructed event

Track from alpha source placed inside the active volume

Example of reconstructed event

- Track from alpha source placed inside the active volume
- 3D plot clearly show time correlation

Example of reconstructed event

- Track from alpha source placed inside the active volume
- 3D plot clearly show time correlation
- Individual traces
 show difference in
 amplitude between
 small and large pads

Trigger generation

- Define pad regions with different trigger attributes
- Example shows configuration for elastic scattering
- More complex pattern triggering configuration can be -200 Pad not connected

Reading if hit

D. Bazin, ARIS 2014, June 2, 2014

Commissioning on ReA3 linac

- Beam provided: ⁴He
 @6 MeV
- Gas target: He (90%)
 CO₂ (10%) 100 Torr
- No magnetic field
- Measure excitation function of (⁴He,⁴He) elastic scattering

Online event display

- Atypical event shows two scattering events in one shot
- Maximum drift
 time of 40 µs
- instantaneous beam rate of ~ 3kHz (600 Hz @ 20% duty cycle)

Experimental program with PAT-TPC

- Alpha cluster structure of neutron-rich nuclei
 - Resonant scattering: ⁶He+⁴He, ¹⁰Be+⁴He, ⁸He+⁴He (not yet): TWINSOL @ U. of Notre-Dame, ISAC @ TRIUMF (not yet)
- Fusion cross section studies
 - ⁶He+⁴⁰Ar sub-barrier fusion cross sections: TWINSOL @ U. of Notre-Dame
- Isobaric analog proton scattering
 - Test on ¹²⁴Sn+p, experiment on ¹³²Sn+p (not yet): ATLAS @ Argonne National Laboratory
- 3α decay mode of Hoyle state in ^{12}C
 - β-decay of ¹²B implanted in PAT-TPC: TWINSOL @ U. of Notre-Dame

D. Suzuki et al., Nuclear Instruments and Methods in Physics Research A 691 (2012) 39-54

⁶He+⁴He scattering

- Missing mass reconstruction
- E_x from TKE, scattering angle of ⁴He and energy of ⁶He
- Energy of ⁶He before reaction known from vertex determination
- E_x^{θ} from angles only
- 2⁺ scatter in E_x^θ from
 ⁶He(⁴He,2n)⁸Be channel

D. Bazin, ARIS 2014, June 2, 2014

Excitation functions & Angular distributions

- Elastic and inelastic scattering measured between 2 and 6 MeV
- Angular distributions measured between 40° and 130°
- Peak at 2.56 MeV corresponds to 9.98(15) MeV resonance in ¹⁰Be, identified as 4⁺
- Deduced partial width Γ_α/Γ of 0.49(5) indicate highly developed α structure

D. Suzuki et al., Phys. Rev. C 87, 054301 (2013)

Excitation functions & Angular distributions

- Elastic and inelastic scattering measured between 2 and 6 MeV
- Angular distributions measured between 40° and 130°
- Peak at 2.56 MeV corresponds to 9.98(15) MeV resonance in ¹⁰Be, identified as 4⁺
- Deduced partial width Γ_α/Γ of 0.49(5) indicate highly developed α structure

D. Suzuki et al., Phys. Rev. C 87, 054301 (2013)

Original AT-TPC scientific program

National Science Foundation funding of \$688k

• Exciting physics program planned and to develop!

Measurement	Physics	Beam Examples	Beam Energy (A MeV)	Min Beam (pps)	Scientific Leader
Transfer & Resonant Reactions	Nuclear Structure	³² Mg(d,p) ³³ Mg ²⁶ Ne(p,p) ²⁶ Ne ^{66,,70} Ni(p,p)	3	100	Kanungo
Astrophysical Reactions	Nucleosynthesis	²⁵ Al(³ He,d) ²⁶ Si	3	100	Famiano, Montes
Fusion and Breakup	Nuclear Structure	${}^{8}\mathrm{B}{+}^{40}\mathrm{Ar}$	3	1000	Kolata
Transfer	Pairing	⁵⁶ Ni+ ³ He	5-19	1000	Macchiavelli
Fission Barriers	Nuclear Structure	199 Tl, 192 Pt	20 - 60	10,000	Phair
Giant Resonances	Nuclear EOS, Nuclear Astro.	⁵⁴ Ni- ⁷⁰ Ni, ¹⁰⁶ Sn- ¹²⁷ Sn	50 - 200	50,000	Garg
Heavy Ion Reactions	Nuclear EOS	106 Sn - 126 Sn, 37 Ca - 49 Ca	50 - 200	50,000	Lynch

Table 1: Overview of the AT-TPC scientific program.

AT-TPC team and collaboration

- NSCL team of 10 people
 - Faculty: D. Bazin, W. Mittig, B. Lynch
 - Engineers: N. Usher, F. Abu-Nimeh
 - Post-docs: D. Suzuki (until 2012), T. Ahn, S. Beceiro-Novo
 - Ph.D. students: A. Fritsch, J. Bradt
- Outside collaborators
 - J. Kolata, U. Garg (U. of Notre-Dame)
 - F. Bechetti (U. of Michigan)
 - R. Kanungo (Saint Mary's U.)
 - M. Heffner (LLNL)
 - ► I-Yang Lee, L. Phair (LBL)

